Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 481(6): 423-436, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38390938

RESUMO

Cardiac mitochondrial dysfunction is a critical contributor to the pathogenesis of aging and many age-related conditions. As such, complete control of mitochondrial function is critical to maintain cardiac efficiency in the aged heart. Lysine acetylation is a reversible post-translational modification shown to regulate several mitochondrial metabolic and biochemical processes. In the present study, we investigated how mitochondrial lysine acetylation regulates fatty acid oxidation (FAO) and cardiac function in the aged heart. We found a significant increase in mitochondrial protein acetylation in the aged heart which correlated with increased level of mitochondrial acetyltransferase-related protein GCN5L1. We showed that acetylation status of several fatty acid and glucose oxidation enzymes (long-chain acyl-coenzyme A dehydrogenase, hydroxyacyl-coA dehydrogenase, and pyruvate dehydrogenase) were significantly up-regulated in aged heart which correlated with decreased enzymatic activities. Using a cardiac-specific GCN5L1 knockout (KO) animal model, we showed that overall acetylation of mitochondrial proteins was decreased in aged KO animals, including FAO proteins which led to improved FAO activity and attenuated cardiac diastolic dysfunction observed in the aged heart. Together, these findings indicate that lysine acetylation regulates FAO in the aged heart which results in improved cardiac diastolic function and this is in part regulated by GCN5L1.


Assuntos
Lisina , Miócitos Cardíacos , Animais , Camundongos , Acetilação , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Lisina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional
2.
Biochem J ; 481(10): 643-651, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38683688

RESUMO

GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.


Assuntos
Anticorpos , Animais , Camundongos , Anticorpos/imunologia , Anticorpos/metabolismo , Fígado/metabolismo , Fígado/imunologia , Camundongos Knockout , Proteínas Mitocondriais/imunologia , Proteínas do Tecido Nervoso/imunologia
3.
Am J Physiol Endocrinol Metab ; 325(1): E83-E98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224468

RESUMO

Lysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a proof-of-concept, we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD). HFD feeding for 12 wk led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared with control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159 ± 0.079 vs. 0.132 ± 0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096 ± 0.056 vs. 0.170 ± 0.059 day-1 in control, and 0.111 ± 0.050 vs. 0.208 ± 0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.NEW & NOTEWORTHY This is the first method to quantify acetylome dynamics in vivo. This method revealed acetylation-mediated altered hepatic mitochondrial protein turnover in response to a high-fat diet in a mouse model of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica , Acetilação , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Camundongos Endogâmicos C57BL
4.
Am J Physiol Heart Circ Physiol ; 322(5): H762-H768, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245133

RESUMO

Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age. We further find that estrogen drives GCN5L1 expression in a cardiac cell line and uses pharmacological approaches to determine the mechanism to be G protein-coupled estrogen receptor (GPER) activation, via translational regulation.NEW & NOTEWORTHY We demonstrate here for the first time that mitochondrial protein acetylation is increased in female hearts, associated with an increase in GCN5L1 levels through a GPER-dependent mechanism. These findings reveal a new potential mediator of divergent cardiac mitochondrial function between men and women.


Assuntos
Proteínas do Tecido Nervoso , Sirtuína 3 , Acetilação , Animais , Estrogênios , Feminino , Coração/fisiologia , Humanos , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 320(1): H238-H244, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216612

RESUMO

Adropin is a nutritionally regulated peptide hormone, secreted primarily by the liver, which modulates metabolic homeostasis in a number of tissues. Growing evidence suggests that adropin is an important regulatory component in a number of cardiovascular pathologies, and may be central to the control of cardiac fuel metabolism and vascular function. In this mini-review, we examine the known facets of adropin biology, discuss open questions in the field, and speculate on the therapeutic potential of targeting adropin-related signaling pathways in cardiovascular diseases.


Assuntos
Vasos Sanguíneos/metabolismo , Doenças Cardiovasculares/metabolismo , Metabolismo Energético , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Transdução de Sinais
6.
J Cell Sci ; 131(22)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30333138

RESUMO

Although GCN5L1 (also known as BLOC1S1) facilitates mitochondrial protein acetylation and controls endosomal-lysosomal trafficking, the mechanisms underpinning these disparate effects are unclear. As microtubule acetylation modulates endosome-lysosome trafficking, we reasoned that exploring the role of GCN5L1 in this biology may enhance our understanding of GCN5L1-mediated protein acetylation. We show that α-tubulin acetylation is reduced in GCN5L1-knockout hepatocytes and restored by GCN5L1 reconstitution. Furthermore, GCN5L1 binds to the α-tubulin acetyltransferase αTAT1, and GCN5L1-mediated α-tubulin acetylation is dependent on αTAT1. Given that cytosolic GCN5L1 has been identified as a component of numerous multiprotein complexes, we explored whether novel interacting partners contribute to this regulation. We identify RanBP2 as a novel interacting partner of GCN5L1 and αTAT1. Genetic silencing of RanBP2 phenocopies GCN5L1 depletion by reducing α-tubulin acetylation, and we find that RanBP2 possesses a tubulin-binding domain, which recruits GCN5L1 to α-tubulin. Finally, we find that genetic depletion of GCN5L1 promotes perinuclear lysosome accumulation and histone deacetylase inhibition partially restores lysosomal positioning. We conclude that the interactions of GCN5L1, RanBP2 and αTAT1 function in concert to control α-tubulin acetylation and may contribute towards the regulation of cellular lysosome positioning. This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetiltransferases/metabolismo , Fígado/metabolismo , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Acetilação , Animais , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microtúbulos/metabolismo , Proteínas Mitocondriais , Cultura Primária de Células , Transfecção
7.
Biochem J ; 476(12): 1713-1724, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31138772

RESUMO

GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.


Assuntos
Glucose/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Morte Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Glucose/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Proteínas Mitocondriais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Oxirredução , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
9.
J Mol Cell Cardiol ; 129: 69-78, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776374

RESUMO

GCN5L1 regulates mitochondrial protein acetylation, cellular bioenergetics, reactive oxygen species (ROS) generation, and organelle positioning in a number of diverse cell types. However, the functional role of GCN5L1 in the heart is currently unknown. As many of the factors regulated by GCN5L1 play a major role in ischemia-reperfusion (I/R) injury, we sought to determine if GCN5L1 is an important nexus in the response to cardiac ischemic stress. Deletion of GCN5L1 in cardiomyocytes resulted in impaired myocardial post-ischemic function and increased infarct development in isolated work-performing hearts. GCN5L1 knockout hearts displayed hallmarks of ROS damage, and scavenging of ROS restored cardiac function and reduced infarct volume in vivo. GCN5L1 knockdown in cardiac-derived AC16 cells was associated with reduced activation of the pro-survival MAP kinase ERK1/2, which was also reversed by ROS scavenging, leading to restored cell viability. We therefore conclude that GCN5L1 activity provides an important protection against I/R induced, ROS-mediated damage in the ischemic heart.


Assuntos
Deleção de Genes , Proteínas Mitocondriais/deficiência , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/deficiência , Especificidade de Órgãos , Recuperação de Função Fisiológica , Animais , Regulação para Baixo/genética , Feminino , Sequestradores de Radicais Livres/metabolismo , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
J Mol Cell Cardiol ; 129: 174-178, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30822408

RESUMO

Exposure to a high fat (HF) diet promotes increased fatty acid uptake, fatty acid oxidation and lipid accumulation in the heart. These maladaptive changes impact cellular energy metabolism and may promote the development of cardiac dysfunction. Attempts to increase cardiac glucose utilization have been proposed as a way to reverse cardiomyopathy in obese and diabetic individuals. Adropin is a nutrient-regulated metabolic hormone shown to promote glucose oxidation over fatty acid oxidation in skeletal muscle homogenates in vitro. The focus of the current study was to investigate whether adropin can regulate substrate metabolism in the heart following prolonged exposure to a HF diet in vivo. Mice on a long-term HF diet received serial intraperitoneal injections of vehicle or adropin over three days. Cardiac glucose oxidation was significantly reduced in HF animals, which was rescued by acute adropin treatment. Significant decreases in cardiac pyruvate dehydrogenase activity were observed in HF animals, which were also reversed by adropin treatment. In contrast to previous studies, this change was unrelated to Pdk4 expression, which remained elevated in both vehicle- and adropin-treated HF mice. Instead, we show that adropin modulated the expression of the mitochondrial acetyltransferase enzyme GCN5L1, which altered the acetylation status and activity of fuel metabolism enzymes to favor glucose utilization. Our findings indicate that adropin exposure leads to increased cardiac glucose oxidation under HF conditions, and may provide a future therapeutic avenue in the treatment of diabetic cardiomyopathy.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miocárdio/metabolismo , Estado Pré-Diabético/metabolismo , Acetilação/efeitos dos fármacos , Animais , Camundongos Obesos , Oxirredução/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
11.
J Biol Chem ; 293(46): 17676-17684, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30323061

RESUMO

Sirtuin 3 (SIRT3) deacetylates and activates several mitochondrial fatty acid oxidation enzymes in the liver. Here, we investigated whether the protein acetylase GCN5 general control of amino acid synthesis 5-like 1 (GCN5L1), previously shown to oppose SIRT3 activity, is involved in the regulation of hepatic fatty acid oxidation. We show that GCN5L1 abundance is significantly up-regulated in response to an acute high-fat diet (HFD). Transgenic GCN5L1 overexpression in the mouse liver increased protein acetylation levels, and proteomic detection of specific lysine residues identified numerous sites that are co-regulated by GCN5L1 and SIRT3. We analyzed several fatty acid oxidation proteins identified by the proteomic screen and found that hyperacetylation of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit α (HADHA) correlates with increased GCN5L1 levels. Stable GCN5L1 knockdown in HepG2 cells reduced HADHA acetylation and increased activities of fatty acid oxidation enzymes. Mice with a liver-specific deletion of GCN5L1 were protected from hepatic lipid accumulation following a chronic HFD and did not exhibit hyperacetylation of HADHA compared with WT controls. Finally, we found that GCN5L1-knockout mice lack HADHA that is hyperacetylated at three specific lysine residues (Lys-350, Lys-383, and Lys-406) and that acetylation at these sites is significantly associated with increased HADHA activity. We conclude that GCN5L1-mediated regulation of mitochondrial protein acetylation plays a role in hepatic metabolic homeostasis.


Assuntos
Ácidos Graxos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Humanos , Lisina/química , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Proteínas do Tecido Nervoso/genética , Oxirredução , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Sirtuína 3/genética
12.
Am J Physiol Heart Circ Physiol ; 313(2): H265-H274, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526709

RESUMO

Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1.NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice.


Assuntos
Acetiltransferases/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Obesidade/enzimologia , Processamento de Proteína Pós-Traducional , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetilação , Acetiltransferases/genética , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Lisina , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Oxirredução , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Interferência de RNA , Ratos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Tempo , Transfecção
14.
Biochem J ; 473(12): 1821-30, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27099338

RESUMO

Lysine acetylation is tightly coupled to the nutritional status of the cell, as the availability of its cofactor, acetyl-CoA, fluctuates with changing metabolic conditions. Recent studies have demonstrated that acetyl-CoA levels act as an indicator of cellular nourishment, and increased abundance of this metabolite can block the induction of cellular recycling programmes. In the present study we investigated the cross-talk between mitochondrial metabolic pathways, acetylation and autophagy, using chemical inducers of mitochondrial acetyl-CoA production. Treatment of cells with α-lipoic acid (αLA), a cofactor of the pyruvate dehydrogenase complex, led to the unexpected hyperacetylation of α-tubulin in the cytosol. This acetylation was blocked by pharmacological inhibition of mitochondrial citrate export (a source for mitochondria-derived acetyl-CoA in the cytosol), was dependent on the α-tubulin acetyltransferase (αTAT) and was coupled to a loss in function of the cytosolic histone deacetylase, HDAC6. We further demonstrate that αLA slows the flux of substrates through autophagy-related pathways, and severely limits the ability of cells to remove depolarized mitochondria through PTEN-associated kinase 1 (PINK1)-mediated mitophagy.


Assuntos
Mitocôndrias/metabolismo , Ácido Tióctico/farmacologia , Tubulina (Proteína)/metabolismo , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Acetiltransferases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Células Hep G2 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
J Biol Chem ; 289(5): 2864-72, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24356961

RESUMO

Cellular mitochondrial content is governed by the competing processes of organelle biogenesis and degradation. It is proposed that these programs are tightly regulated to ensure that the cell maintains sufficient organelles to meet its biosynthetic, energetic, and other homeostatic requirements. We recently reported that GCN5L1, a putative nutrient-sensing regulator, controls mitochondrial removal by autophagy. Here we show that genetic deletion of GCN5L1 has a direct positive effect on the expression and activity of Transcriptional Factor EB (TFEB), which acts as a master regulator of autophagy. Surprisingly, the induction of TFEB-mediated autophagy pathways does not diminish cellular mitochondrial content, as its activity is countered by induction of the mitochondrial biogenesis transcriptional co-activator PPARγ coactivator 1α (PGC-1α). Concurrent induction of the TFEB and PGC-1α pathways results in an increased mitochondrial turnover rate in GCN5L1(-/-) cells. Finally, we show that genetic knockdown of either TFEB or PGC-1α leads to a corresponding decrease in the expression of the other gene, indicating that these proteins act coordinately, and in opposition, to maintain cellular mitochondrial content in response to the modulation of nutrient-sensing signatures.


Assuntos
Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Fibroblastos/citologia , Homeostase/fisiologia , Lisossomos/fisiologia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo
16.
Biochim Biophys Acta ; 1841(4): 525-34, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24525425

RESUMO

Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named "autophagy", enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.


Assuntos
Autofagia/genética , Metabolismo Energético , Alimentos , Mitofagia/genética , Acetilcoenzima A/metabolismo , Acetilação , Humanos , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional
17.
J Cell Sci ; 126(Pt 21): 4843-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006259

RESUMO

Because nutrient-sensing nuclear and cytosolic acetylation mediates cellular autophagy, we investigated whether mitochondrial acetylation modulates mitochondrial autophagy (mitophagy). Knockdown of GCN5L1, a component of the mitochondrial acetyltransferase machinery, diminished mitochondrial protein acetylation and augmented mitochondrial enrichment of autophagy mediators. This program was disrupted by SIRT3 knockdown. Chronic GCN5L1 depletion increased mitochondrial turnover and reduced mitochondrial protein content and/or mass. In parallel, mitochondria showed blunted respiration and enhanced 'stress-resilience'. Genetic disruption of autophagy mediators Atg5 and p62 (also known as SQSTM1), as well as GCN5L1 reconstitution, abolished deacetylation-induced mitochondrial autophagy. Interestingly, this program is independent of the mitophagy E3-ligase Parkin (also known as PARK2). Taken together, these data suggest that deacetylation of mitochondrial proteins initiates mitochondrial autophagy in a canonical autophagy-mediator-dependent program and shows that modulation of this regulatory program has ameliorative mitochondrial homeostatic effects.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilação , Animais , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Curr Opin Pharmacol ; 76: 102461, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759430

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a major cardiovascular disorder with increasing prevalence and a limited range of targeted treatment options. While HFpEF can be derived from several different etiologies, much of the current growth in the disease is being driven by metabolic dysfunction (e.g. obesity, diabetes, hypertension). Deleterious changes in mitochondrial energy metabolism are a common feature of HFpEF, and may help to drive the progression of the disease. In this brief article we aim to review various aspects of cardiac mitochondrial dysfunction in HFpEF, discuss the emerging topic of HFpEF-driven mitochondrial dysfunction in tissues beyond the heart, and examine whether supporting mitochondrial function may be a therapeutic approach to arrest or reverse disease development.


Assuntos
Insuficiência Cardíaca , Mitocôndrias Cardíacas , Volume Sistólico , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Volume Sistólico/fisiologia , Animais , Mitocôndrias Cardíacas/metabolismo , Metabolismo Energético
19.
Cell Signal ; 116: 111065, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38281616

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Assuntos
Isquemia Miocárdica , Proteínas Proto-Oncogênicas c-akt , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Hipóxia/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Fatores de Transcrição/metabolismo
20.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048886

RESUMO

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Animais , Cobaias , Agentes Neurotóxicos/toxicidade , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Atropina/farmacologia , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa