Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33269788

RESUMO

Myocardial bridging (MB) and coronary atherosclerotic stenosis can impair coronary blood flow and may cause myocardial ischemia or even heart attack. It remains unclear how MB and stenosis are similar or different regarding their impacts on coronary hemodynamics. The purpose of this study was to compare the hemodynamic effects of coronary stenosis and MB using experimental and computational fluid dynamics (CFD) approaches. For CFD modeling, three MB patients with different levels of lumen obstruction, mild, moderate, and severe were selected. Patient-specific left anterior descending (LAD) coronary artery models were reconstructed from biplane angiograms. For each MB patient, the virtually healthy and stenotic models were also simulated for comparison. In addition, an in vitro flow-loop was developed, and the pressure drop was measured for comparison. The CFD simulations results demonstrated that the difference between MB and stenosis increased with increasing MB/stenosis severity and flowrate. Experimental results showed that increasing the MB length (by 140%) only had significant impact on the pressure drop in the severe MB (39% increase at the exercise), but increasing the stenosis length dramatically increased the pressure drop in both moderate and severe stenoses at all flow rates (31% and 93% increase at the exercise, respectively). Both CFD and experimental results confirmed that the MB had a higher maximum and a lower mean pressure drop in comparison with the stenosis, regardless of the degree of lumen obstruction. A better understanding of MB and atherosclerotic stenosis may improve the therapeutic strategies in coronary disease patients and prevent acute coronary syndromes.


Assuntos
Ponte Miocárdica
2.
EuroIntervention ; 19(11): e913-e922, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38060282

RESUMO

BACKGROUND: Electrical intravascular lithotripsy (E-IVL) uses shock waves to fracture calcified plaque. AIMS: We aimed to demonstrate the ability of laser IVL (L-IVL) to fracture calcified plaques in ex vivo human coronary arteries and to identify and evaluate the mechanisms for increased vessel compliance. METHODS: Shock waves were generated by a Ho:YAG (Holmium: yttrium-aluminium-garnet) laser (2 J, 5 Hz) and recorded by a high-speed camera and pressure sensor. Tests were conducted on phantoms and 19 fresh human coronary arteries. Before and after L-IVL, arterial compliance and optical coherence tomography (OCT) pullbacks were recorded, followed by histology. Additionally, microcomputed tomography (micro-CT) and scanning electron microscopy (SEM) were performed. Finite element models (FEM) were utilised to examine the mechanism of L-IVL. RESULTS: Phantom cracks were obtained using 230 µm and 400 µm fibres with shock-wave pressures of 84±5.0 atm and 62±0.4 atm, respectively. Post-lithotripsy, calcium plaque modifications, including fractures and debonding, were identified by OCT in 78% of the ex vivo calcified arteries (n=19). Histological analysis revealed calcium microfractures (38.7±10.4 µm width) in 57% of the arteries which were not visible by OCT. Calcium microfractures were verified by micro-CT and SEM. The lumen area increased from 2.9±0.4 to 4.3±0.8 mm2 (p<0.01). Arterial compliance increased by 2.3±0.6 atm/ml (p<0.05). FEM simulations suggest that debonding and intimal tears are additional mechanisms for increased arterial compliance. CONCLUSIONS: L-IVL has the capability to increase calcified coronary artery compliance by multiple mechanisms.


Assuntos
Fraturas de Estresse , Litotripsia a Laser , Calcificação Vascular , Humanos , Cálcio , Vasos Coronários/diagnóstico por imagem , Microtomografia por Raio-X , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/terapia , Resultado do Tratamento
3.
Front Physiol ; 12: 712636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483964

RESUMO

The stability of blood vessels is essential for maintaining the normal arterial function, and loss of stability may result in blood vessel tortuosity. The previous theoretical models of artery buckling were developed for circular vessel models, but arteries often demonstrate geometric variations such as elliptic and eccentric cross-sections. The objective of this study was to establish the theoretical foundation for noncircular blood vessel bent (i.e., lateral) buckling and simulate the buckling behavior of arteries with elliptic and eccentric cross-sections using finite element analysis. A generalized buckling equation for noncircular vessels was derived and finite element analysis was conducted to simulate the artery buckling behavior under lumen pressure and axial tension. The arterial wall was modeled as a thick-walled cylinder with hyper-elastic anisotropic and homogeneous material. The results demonstrated that oval or eccentric cross-section increases the critical buckling pressure of arteries and having both ovalness and eccentricity would further enhance the effect. We conclude that variations of the cross-sectional shape affect the critical pressure of arteries. These results improve the understanding of the mechanical stability of arteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa