Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 629(8013): 878-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720086

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Simulação por Computador , Desenho de Fármacos , SARS-CoV-2 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Análise Mutacional de DNA , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , Desenho de Fármacos/métodos
2.
J Biol Chem ; 289(44): 30668-30679, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25231992

RESUMO

Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1' recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Francisella tularensis/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Carboxipeptidases/fisiologia , Domínio Catalítico , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Monócitos/microbiologia , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Difração de Raios X
3.
PLoS One ; 19(1): e0289198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271318

RESUMO

Viral populations in natural infections can have a high degree of sequence diversity, which can directly impact immune escape. However, antibody potency is often tested in vitro with a relatively clonal viral populations, such as laboratory virus or pseudotyped virus stocks, which may not accurately represent the genetic diversity of circulating viral genotypes. This can affect the validity of viral phenotype assays, such as antibody neutralization assays. To address this issue, we tested whether recombinant virus carrying SARS-CoV-2 spike (VSV-SARS-CoV-2-S) stocks could be made more genetically diverse by passage, and if a stock passaged under selective pressure was more capable of escaping monoclonal antibody (mAb) neutralization than unpassaged stock or than viral stock passaged without selective pressures. We passaged VSV-SARS-CoV-2-S four times concurrently in three cell lines and then six times with or without polyclonal antiserum selection pressure. All three of the monoclonal antibodies tested neutralized the viral population present in the unpassaged stock. The viral inoculum derived from serial passage without antiserum selection pressure was neutralized by two of the three mAbs. However, the viral inoculum derived from serial passage under antiserum selection pressure escaped neutralization by all three mAbs. Deep sequencing revealed the rapid acquisition of multiple mutations associated with antibody escape in the VSV-SARS-CoV-2-S that had been passaged in the presence of antiserum, including key mutations present in currently circulating Omicron subvariants. These data indicate that viral stock that was generated under polyclonal antiserum selection pressure better reflects the natural environment of the circulating virus and may yield more biologically relevant outcomes in phenotypic assays. Thus, mAb assessment assays that utilize a more genetically diverse, biologically relevant, virus stock may yield data that are relevant for prediction of mAb efficacy and for enhancing biosurveillance.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Testes de Neutralização , Soros Imunes , Glicoproteína da Espícula de Coronavírus/genética
4.
PLoS One ; 19(6): e0304525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861498

RESUMO

The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.


Assuntos
Chlamydia trachomatis , Chlamydia trachomatis/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Estrutura Secundária de Proteína
5.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324800

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

6.
Methods Mol Biol ; 2349: 215-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34718998

RESUMO

With the nexus of super computing and the biotech revolution, it seems an era of predictive biology through systems biology may be at hand. Modern omics capabilities enable examination of the state of biological system in exquisite detail. The genome, transcriptome, proteome, and metabolome may all be largely knowable, at least for some model systems, providing a basis for modeling and simulation of molecular mechanisms, or pathways, that could capture a biological system's emergent properties. However, there are significant challenges remaining that impede the realization of this vision, perhaps the most significant being the missing functional annotation of genes and gene products. For even the most well-studied organisms as much as a third of called genes for a given genome are not annotated and more than half may be tenuous. Homology inferred from sequence similarity is the basis for much of genome annotation. Homology inferred from structural similarity could be a powerful complement to sequence-based annotation methods. Structural biology or structural informatics can be used to assign molecular function and may have increasing utility with the rapid growth of gene sequence databases and emerging methods for structure determination, like structure prediction based on coevolution. Here we describe tools and provide example cases using structural similarity at the level of quaternary structure, domain content, domain topology, and small 3D motifs to infer homology and posit function. Ultimately annotation by similarity, be it 3D structure homology or more classically primary sequence homology, must be founded by accurate annotation of one ortholog in the group-understanding every function encoded by a genome remains a major challenge to life science.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Anotação de Sequência Molecular , Proteoma
7.
Biomed Opt Express ; 13(8): 4134-4159, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032581

RESUMO

Legionella is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of Legionella research has provided important insights into Legionella pathogenesis. Although standard commercial microscopes have led to significant advances in understanding Legionella pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner (RGS) module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study Legionella pneumophila infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that Legionella pneumophila infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.

8.
Sci Rep ; 12(1): 12489, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864134

RESUMO

Alchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the free energy difference between distinct chemical systems. Here we report our implementation of automated large-scale FEP calculations, using the Amber software package, to facilitate antibody design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to predict the effect of mutations on both the binding affinity and the structural stability. Importantly, we incorporate multiple strategies to faithfully estimate the statistical uncertainties in the FEP results. As a case study, we apply our protocols to systematically evaluate variants of the m396 antibody for their conformational stability and their binding affinity to the spike proteins of SARS-CoV-1 and SARS-CoV-2. By properly adjusting relevant parameters, the particle collapse problems in the FEP simulations are avoided. Furthermore, large statistical errors in a small fraction of the FEP calculations are effectively reduced by extending the sampling, such that acceptable statistical uncertainties are achieved for the vast majority of the cases with a modest total computational cost. Finally, our predicted conformational stability for the m396 variants is qualitatively consistent with the experimentally measured melting temperatures. Our work thus demonstrates the applicability of FEP in computational antibody design.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Anticorpos , Humanos , SARS-CoV-2 , Termodinâmica
9.
Mutat Res ; 722(2): 165-70, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21182983

RESUMO

Here we present a perspective on a range of practical uses of structural genomics for mutagen research. Structural genomics is an overloaded term and requires some definition to bound the discussion; we give a brief description of public and private structural genomics endeavors, along with some of their objectives, their activities, their capabilities, and their limitations. We discuss how structural genomics might impact mutagen research in three different scenarios: at a structural genomics center, at a lab with modest resources that also conducts structural biology research, and at a lab that is conducting mutagen research without in-house experimental structural biology. Applications span functional annotation of single genes or SNP, to constructing gene networks and pathways, to an integrated systems biology approach. Structural genomics centers can take advantage of systems biology models to target high value targets for structure determination and in turn extend systems models to better understand systems biology diseases or phenomenon. Individual investigator run structural biology laboratories can collaborate with structural genomics centers, but can also take advantage of technical advances and tools developed by structural genomics centers and can employ a structural genomics approach to advancing biological understanding. Individual investigator-run non-structural biology laboratories can also collaborate with structural genomics centers, possibly influencing targeting decisions, but can also use structure based annotation tools enabled by the growing coverage of protein fold space provided by structural genomics. Better functional annotation can inform pathway and systems biology models.


Assuntos
Genômica/métodos , Mutagênicos , Pesquisa , Técnicas de Laboratório Clínico , Cristalografia , Redes Reguladoras de Genes , Informática/métodos , Estrutura Molecular , Biologia de Sistemas
10.
Front Immunol ; 12: 716676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659206

RESUMO

Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.


Assuntos
Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/imunologia , Proteoma , Proteômica , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Francisella tularensis/imunologia , Humanos , Imunização , Camundongos , Peptídeos/imunologia , Proteômica/métodos , Vacinas de Subunidades Antigênicas/imunologia
11.
Biochim Biophys Acta ; 1788(3): 724-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109924

RESUMO

To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly.


Assuntos
Bacteriorodopsinas/química , Lipoproteínas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Nanoestruturas , Tamanho da Partícula , Espectrofotometria Ultravioleta
12.
Artigo em Inglês | MEDLINE | ID: mdl-20606272

RESUMO

The crystal structure of the urease gamma subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 A resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (alphabetagamma)(3) composition observed for other bacterial ureases. The gamma subunit may be of primary importance for the formation of the urease quaternary structure.


Assuntos
Mycobacterium tuberculosis/enzimologia , Urease/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Mol Cell Proteomics ; 7(11): 2246-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18603642

RESUMO

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


Assuntos
Apolipoproteína A-I/química , Proteínas de Membrana/química , Apolipoproteína A-I/genética , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Sequência de Bases , Primers do DNA/genética , Halobacterium salinarum/genética , Proteínas de Membrana/genética , Microscopia de Força Atômica , Nanopartículas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Bioconjug Chem ; 20(3): 460-5, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19239247

RESUMO

Nanolipoprotein particles (NLPs) are nanometer-sized, discoidal particles that self-assemble from purified apolipoprotein and phospholipid. Their size and facile functionalization suggest potential application of NLPs as platforms for the presentation and delivery of recombinant proteins. To this end, we investigated incorporation of nickel-chelating lipids into NLPs (NiNLPs) and subsequent sequestration of polyhistidine (His)-tagged proteins. From initial lipid screens for NLP formation, the two phospholipids DMPC and DOPC were identified as suitable bulk lipids for incorporation of the nickel-chelating lipid DOGS-NTA-Ni into NLPs, and NiNLPs were successfully formed with varying amounts of DOGS-NTA-Ni. NiNLPs consisting of 10% DOGS-NTA-Ni with 90% bulk lipid (either DMPC or DOPC) were thoroughly characterized by size exclusion chromatography (SEC), non-denaturing gradient gel electrophoresis (NDGGE), and atomic force microscopy (AFM). Three different His-tagged proteins were sequestered on NiNLPs in a nickel-dependent manner, and the amount of immobilized protein was contingent on the size and composition of the NiNLP.


Assuntos
Proteínas de Bactérias/metabolismo , Quelantes/química , Lipídeos/química , Lipoproteínas/química , Nanopartículas/química , Níquel/química , Proteínas de Bactérias/química , Quelantes/metabolismo , Histidina/química , Histidina/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Níquel/metabolismo , Tamanho da Partícula , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Yersinia pestis/química
15.
Methods Mol Biol ; 498: 273-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18988032

RESUMO

Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment. This chapter is focused on describing a novel method for producing and solubilizing membrane proteins that can be easily adapted to high-throughput expression screening. This process is based on cell-free transcription and translation technology coupled with nanolipoprotein par ticles (NLPs), which are lipid bilayers confined within a ring of amphipathic protein of defined diameter. The NLPs act as a platform for inserting, solubilizing and characterizing functional membrane proteins. NLP component proteins (apolipoproteins), as well as membrane proteins can be produced by either traditional cell-based or as discussed here, cell-free expression methodologies.


Assuntos
Lipoproteínas/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Biotinilação , Fracionamento Celular/métodos , Escherichia coli/genética , Lipoproteínas/química , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Nanopartículas/química , Análise Serial de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Solubilidade
16.
Int J Mol Sci ; 10(7): 2958-2971, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19742178

RESUMO

Heterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results-indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins. Lipid-binding proteins known as apolipoproteins can self assemble with liposomes to form reconstituted high density lipoproteins (rHDLs) or nanolipoprotein particles (NLPs) when used for biotechnology applications such as the solubilization of membrane proteins. Typically, the apolipoprotein and phospholipids reactants are self assembled and even with careful assembly protocols the product often contains heterogeneous particles. In fact, size polydispersity in rHDLs and NLPs published in the literature are frequently observed, which may confound the accurate use of analytical methods. In this article, we demonstrate a procedure for producing a pure, monodisperse NLP subpopulation from a polydisperse self-assembly using size exclusion chromatography (SEC) coupled with high resolution particle imaging by atomic force microscopy (AFM). In addition, NLPs have been shown to self assemble both in the presence and absence of detergents such as cholate, yet the effects of cholate on NLP polydispersity and separation has not been systematically examined. Therefore, we examined the separation properties of NLPs assembled in both the absence and presence of cholate using SEC and native gel electrophoresis. From this analysis, NLPs prepared with and without cholate showed particles with well defined diameters spanning a similar size range. However, cholate was shown to have a dramatic affect on NLP separation by SEC and native gel electrophoresis. Furthermore, under conditions where different sized NLPs were not sufficiently separated or purified by SEC, AFM was used to deconvolute the elution pattern of different sized NLPs. From this analysis we were able to purify an NLP subpopulation to 90% size homogeneity by taking extremely fine elutions from the SEC. With this purity, we generate high quality NLP crystals that were over 100 microm in size with little precipitate, which could not be obtained utilizing the traditional size exclusion techniques. This purification procedure and the methods for validation are broadly applicable to other lipoprotein particles.


Assuntos
Lipoproteínas HDL/química , Nanopartículas/química , Colatos/química , Cromatografia em Gel , Bicamadas Lipídicas/química
17.
Methods Mol Biol ; 426: 387-402, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18542878

RESUMO

Microfluidic technologies enable a relatively new approach to macromolecular crystallization, but offer several significant advantages over more traditional techniques. Microfluidic devices provide significant savings in the amount of material required to complete a set of experiments, although recent innovations with vapor diffusion and microbatch methods have also greatly reduced their material requirements. When compared with these other methods, microfluidic approaches still consume 5-100x less material. In addition, comparisons in one set of experiments suggest that microfluidic free-interface diffusion may also offer substantially higher success rates than sitting drop vapor diffusion. Microfluidic methods also provide opportunities for experimental strategies involving testing multiple samples in parallel. When combined with randomized design of screening reagents, microfluidic devices provide a highly efficient method for sampling crystallization space. Commercial microfluidic crystallization chips have been in circulation for a number of years now and stable protocols for their use, tips and tricks, and data on their success and failure are now available.


Assuntos
Substâncias Macromoleculares , Microfluídica/instrumentação , Microfluídica/métodos , Cristalização , Cristalografia por Raios X/métodos , Difusão
18.
Artigo em Inglês | MEDLINE | ID: mdl-30406044

RESUMO

Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, and are often fatal to humans and animals. Owing to the high fatality rate, potential for spread by aerosolization, and the lack of efficacious therapeutics, B. pseudomallei and B. mallei are considered biothreat agents of concern. In this study, we investigate the proteome of Burkholderia thailandensis, a closely related surrogate for the two more virulent Burkholderia species, during infection of host cells, and compare to that of B. thailandensis in culture. Studying the proteome of Burkholderia spp. during infection is expected to reveal molecular mechanisms of intracellular survival and host immune evasion; but proteomic profiling of Burkholderia during host infection is challenging. Proteomic analyses of host-associated bacteria are typically hindered by the overwhelming host protein content recovered from infected cultures. To address this problem, we have applied bio-orthogonal noncanonical amino acid tagging (BONCAT) to B. thailandensis, enabling the enrichment of newly expressed bacterial proteins from virtually any growth condition, including host cell infection. In this study, we show that B. thailandensis proteins were selectively labeled and efficiently enriched from infected host cells using BONCAT. We also demonstrate that this method can be used to label bacteria in situ by fluorescent tagging. Finally, we present a global proteomic profile of B. thailandensis as it infects host cells and a list of proteins that are differentially regulated in infection conditions as compared to bacterial monoculture. Among the identified proteins are quorum sensing regulated genes as well as homologs to previously identified virulence factors. This method provides a powerful tool to study the molecular processes during Burkholderia infection, a much-needed addition to the Burkholderia molecular toolbox.


Assuntos
Proteínas de Bactérias/análise , Infecções por Burkholderia/microbiologia , Burkholderia/química , Burkholderia/crescimento & desenvolvimento , Proteoma/análise , Proteômica/métodos , Células A549 , Interações Hospedeiro-Patógeno , Humanos , Modelos Teóricos
19.
Proteins ; 62(3): 563-9, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16374842

RESUMO

The three-dimensional structure of Rv2607, a putative pyridoxine 5'-phosphate oxidase (PNPOx) from Mycobacterium tuberculosis, has been determined by X-ray crystallography to 2.5 A resolution. Rv2607 has a core domain similar to known PNPOx structures with a flavin mononucleotide (FMN) cofactor. Electron density for two FMN at the dimer interface is weak despite the bright yellow color of the protein solution and crystal. The shape and size of the putative binding pocket is markedly different from that of members of the PNPOx family, which may indicate some significant changes in the FMN binding mode of this protein relative to members of the family.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Piridoxaminafosfato Oxidase/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase , Dobramento de Proteína , Estrutura Secundária de Proteína , Piridoxaminafosfato Oxidase/genética , Piridoxaminafosfato Oxidase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
J Mol Biol ; 346(4): 1035-46, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15701515

RESUMO

All living systems require protection against the damaging effects of reactive oxygen species. The genome of Mycobacterium tuberculosis, the cause of TB, encodes a number of peroxidases that are thought to be active against organic and inorganic peroxides, and are likely to play a key role in the ability of this organism to survive within the phagosomes of macrophages. The open reading frame Rv2238c in M.tuberculosis encodes a 153-residue protein AhpE, which is a peroxidase of the 1-Cys peroxiredoxin (Prx) family. The crystal structure of AhpE, determined at 1.87 A resolution (R(cryst)=0.179, R(free)=0.210), reveals a compact single-domain protein with a thioredoxin fold. AhpE forms both dimers and octamers; a tightly-associated dimer and a ring-like octamer, generated by crystallographic 4-fold symmetry. In this native structure, the active site Cys45 is in its oxidized, sulfenic acid (S-O-H) state. A second crystal form of AhpE, obtained after soaking in sodium bromide and refined at 1.90 A resolution (R(cryst)=0.242, R(free)=0.286), reveals the reduced structure. In this structure, a conformational change in an external loop, in two of the four molecules in the asymmetric unit, allows Arg116 to stabilise the Cys45 thiolate ion, and concomitantly closes a surface channel. This channel is identified as the likely binding site for a physiological reductant, and the conformational change is inferred to be important for the reaction cycle of AhpE.


Assuntos
Mycobacterium tuberculosis/enzimologia , Peroxidases/química , Sequência de Aminoácidos , Sítios de Ligação , Brometos/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Peroxidases/metabolismo , Peroxirredoxinas , Ligação Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa