Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560739

RESUMO

OBJECTIVES: Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS: Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS: Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS: Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Rotavirus , Rotavirus , Pré-Escolar , Humanos , Antígenos Virais/genética , Antígenos Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Diarreia , Genótipo , Antígenos do Grupo Sanguíneo de Lewis/genética , África do Sul/epidemiologia
2.
Front Microbiol ; 11: 604444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510725

RESUMO

Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children <5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibited a genotype 2 reassortment of the NSP3 gene, with genetic constellation of G12-P[8]-I1-R1-C1-M1-A1-N1-T2-E1-H1. Overall, 10 gene segments (VP1-VP4, VP6, and NSP1-NSP5) of African G12 strains were determined to be genetically related to cognate gene sequences from globally circulating human Wa-like G12, G9, and G1 strains with nucleotide (amino acid) identities in the range of 94.1-99.9% (96.5-100%), 88.5-98.5% (93-99.1%), and 89.8-99.0% (88.7-100%), respectively. Phylogenetic analysis showed that the Ethiopian G12P[6] possessing a DS-1-like backbone consistently clustered with G2P[4] strains from Senegal and G3P[6] from Ethiopia with the VP1, VP2, VP6, and NSP1-NSP4 genes. Notably, the NSP2, NSP3, and NSP4 of most of the study strains exhibited the closest relationship with porcine strains suggesting the occurrence of reassortment between human and porcine strains. Our results add to the understanding of potential roles that interspecies transmission play in generating human rotavirus diversity through reassortment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa