Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Methods ; 17(10): 1025-1032, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929269

RESUMO

The immune system's ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8+ T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8+ T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus-specific CD8+ T cells in the lungs of influenza A virus-infected mice. It is thus possible to visualize antigen-specific CD8+ T-cell populations in vivo, which may serve prognostic and diagnostic roles.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/virologia , Papillomaviridae/imunologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Antígenos , Clonagem Molecular , Epitopos/genética , Epitopos/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulina G/classificação , Imunoglobulina G/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia
2.
Nature ; 502(7473): 698-702, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24056934

RESUMO

Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns. We and others are developing computation-guided strategies for functional discovery with 'metabolite docking' to experimentally derived or homology-based three-dimensional structures. Bacterial metabolic pathways often are encoded by 'genome neighbourhoods' (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by 'predicting' the intermediates in the glycolytic pathway in Escherichia coli. Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.


Assuntos
Bactérias , Enzimas/química , Enzimas/genética , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular/métodos , Homologia Estrutural de Proteína , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Glicólise , Cinética , Metabolismo , Metabolômica , Modelos Moleculares , Família Multigênica/genética , Óperon , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 112(18): 5661-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901324

RESUMO

Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products. We tackle this problem by developing an algorithm to enumerate possible carbocations derived from the farnesyl cation, the first reactive intermediate of the substrate, and evaluating their steric and electrostatic compatibility with the active site. The homology model of a putative pentalenene synthase (Uniprot: B5GLM7) from Streptomyces clavuligerus was used in an automated computational workflow for product prediction. Surprisingly, the workflow predicted a linear triquinane scaffold as the top product skeleton for B5GLM7. Biochemical characterization of B5GLM7 reveals the major product as (5S,7S,10R,11S)-cucumene, a sesquiterpene with a linear triquinane scaffold. To our knowledge, this is the first documentation of a terpene synthase involved in the synthesis of a linear triquinane. The success of our prediction for B5GLM7 suggests that this approach can be used to facilitate the functional assignment of novel terpene synthases.


Assuntos
Alquil e Aril Transferases/química , Streptomyces/enzimologia , Algoritmos , Carbono/química , Domínio Catalítico , Cátions , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Estrutura Terciária de Proteína , Software , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 112(16): E1974-83, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848029

RESUMO

Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.


Assuntos
Família Multigênica , Monoéster Fosfórico Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala , Cinética , Reprodutibilidade dos Testes , Especificidade por Substrato
5.
PLoS Biol ; 12(4): e1001843, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24756107

RESUMO

The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction. Interactive versions of the networks, associated with functional and other types of information, can be downloaded from the Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu).


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/ultraestrutura , Modelos Moleculares , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Bases de Dados de Proteínas , Glutationa/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
6.
J Am Chem Soc ; 138(3): 826-36, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26714575

RESUMO

5-Carboxyvanillate decarboxylase (LigW) catalyzes the conversion of 5-carboxyvanillate to vanillate in the biochemical pathway for the degradation of lignin. This enzyme was shown to require Mn(2+) for catalytic activity and the kinetic constants for the decarboxylation of 5-carboxyvanillate by the enzymes from Sphingomonas paucimobilis SYK-6 (kcat = 2.2 s(-1) and kcat/Km = 4.0 × 10(4) M(-1) s(-1)) and Novosphingobium aromaticivorans (kcat = 27 s(-1) and kcat/Km = 1.1 × 10(5) M(-1) s(-1)) were determined. The three-dimensional structures of both enzymes were determined in the presence and absence of ligands bound in the active site. The structure of LigW from N. aromaticivorans, bound with the substrate analogue, 5-nitrovanillate (Kd = 5.0 nM), was determined to a resolution of 1.07 Å. The structure of this complex shows a remarkable enzyme-induced distortion of the nitro-substituent out of the plane of the phenyl ring by approximately 23°. A chemical reaction mechanism for the decarboxylation of 5-carboxyvanillate by LigW was proposed on the basis of the high resolution X-ray structures determined in the presence ligands bound in the active site, mutation of active site residues, and the magnitude of the product isotope effect determined in a mixture of H2O and D2O. In the proposed reaction mechanism the enzyme facilitates the transfer of a proton to C5 of the substrate prior to the decarboxylation step.


Assuntos
Biocatálise , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Estrutura Molecular , Sphingomonadaceae/enzimologia , Sphingomonas/enzimologia , Especificidade por Substrato
7.
Biochemistry ; 54(3): 909-31, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25540822

RESUMO

The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. We describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of the library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.


Assuntos
Proteínas de Transporte/metabolismo , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Bacillus/metabolismo , Carboidratos/química , Clonagem Molecular , Cristalografia por Raios X , Fluorometria , Cinética , Ligantes , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
8.
Biochemistry ; 53(20): 3357-66, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24831290

RESUMO

The l-lyxonate dehydratase (LyxD) in vitro enzymatic activity and in vivo metabolic function were assigned to members of an isofunctional family within the mandelate racemase (MR) subgroup of the enolase superfamily. This study combined in vitro and in vivo data to confirm that the dehydration of l-lyxonate is the biological role of the members of this family. In vitro kinetic experiments revealed catalytic efficiencies of ∼10(4) M(-1) s(-1) as previously observed for members of other families in the MR subgroup. Growth studies revealed that l-lyxonate is a carbon source for Pseudomonas aeruginosa PAO1; transcriptomics using qRT-PCR established that the gene encoding LyxD as well as several other conserved proximal genes were upregulated in cells grown on l-lyxonate. The proximal genes were shown to be involved in a pathway for the degradation of l-lyxonate, in which the first step is dehydration by LyxD followed by dehydration of the 2-keto-3-deoxy-l-lyxonate product by 2-keto-3-deoxy-l-lyxonate dehydratase to yield α-ketoglutarate semialdehyde. In the final step, α-ketoglutarate semialdehyde is oxidized by a dehydrogenase to α-ketoglutarate, an intermediate in the citric acid cycle. An X-ray structure for the LyxD from Labrenzia aggregata IAM 12614 with Mg(2+) in the active site was determined that confirmed the expectation based on sequence alignments that LyxDs possess a conserved catalytic His-Asp dyad at the end of seventh and sixth ß-strands of the (ß/α)7ß-barrel domain as well as a conserved KxR motif at the end of second ß-strand; substitutions for His 316 or Arg 179 inactivated the enzyme. This is the first example of both the LyxD function in the enolase superfamily and a pathway for the catabolism of l-lyxonate.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/química , Transdução de Sinais/fisiologia , Açúcares Ácidos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais/genética , Açúcares Ácidos/metabolismo , Transcriptoma
9.
Biochemistry ; 53(3): 591-600, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24401123

RESUMO

In bacteria, 3',5'-adenosine bisphosphate (pAp) is generated from 3'-phosphoadenosine 5'-phosphosulfate in the sulfate assimilation pathway, and from coenzyme A by the transfer of the phosphopantetheine group to the acyl-carrier protein. pAp is subsequently hydrolyzed to 5'-AMP and orthophosphate, and this reaction has been shown to be important for superoxide stress tolerance. Herein, we report the discovery of the first instance of an enzyme from the amidohydrolase superfamily that is capable of hydrolyzing pAp. Crystal structures of Cv1693 from Chromobacterium violaceum have been determined to a resolution of 1.9 Å with AMP and orthophosphate bound in the active site. The enzyme has a trinuclear metal center in the active site with three Mn(2+) ions. This enzyme (Cv1693) belongs to the Cluster of Orthologous Groups cog0613 from the polymerase and histidinol phosphatase family of enzymes. The values of kcat and kcat/Km for the hydrolysis of pAp are 22 s(-1) and 1.4 × 10(6) M(-1) s(-1), respectively. The enzyme is promiscuous and is able to hydrolyze other 3',5'-bisphosphonucleotides (pGp, pCp, pUp, and pIp) and 2'-deoxynucleotides with comparable catalytic efficiency. The enzyme is capable of hydrolyzing short oligonucleotides (pdA)5, albeit at rates much lower than that of pAp. Enzymes from two other enzyme families have previously been found to hydrolyze pAp at physiologically significant rates. These enzymes include CysQ from Escherichia coli (cog1218) and YtqI/NrnA from Bacillus subtilis (cog0618). Identification of the functional homologues to the experimentally verified pAp phosphatases from cog0613, cog1218, and cog0618 suggests that there is relatively little overlap of enzymes with this function in sequenced bacterial genomes.


Assuntos
Difosfato de Adenosina/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Difosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Chromobacterium/enzimologia , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fosfoadenosina Fosfossulfato/metabolismo , Monoéster Fosfórico Hidrolases/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato
10.
Biochemistry ; 53(16): 2722-31, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24697546

RESUMO

The continued increase in the size of the protein sequence databases as a result of advances in genome sequencing technology is overwhelming the ability to perform experimental characterization of function. Consequently, functions are assigned to the vast majority of proteins via automated, homology-based methods, with the result that as many as 50% are incorrectly annotated or unannotated ( Schnoes et al. PLoS Comput. Biol. 2009 , 5 ( 12 ), e1000605 ). This manuscript describes a study of the D-mannonate dehydratase (ManD) subgroup of the enolase superfamily (ENS) to investigate how function diverges as sequence diverges. Previously, one member of the subgroup had been experimentally characterized as ManD [dehydration of D-mannonate to 2-keto-3-deoxy-D-mannonate (equivalently, 2-keto-3-deoxy-D-gluconate)]. In this study, 42 additional members were characterized to sample sequence-function space in the ManD subgroup. These were found to differ in both catalytic efficiency and substrate specificity: (1) high efficiency (kcat/KM = 10(3) to 10(4) M(-1) s(-1)) for dehydration of D-mannonate, (2) low efficiency (kcat/KM = 10(1) to 10(2) M(-1) s(-1)) for dehydration of d-mannonate and/or D-gluconate, and 3) no-activity with either D-mannonate or D-gluconate (or any other acid sugar tested). Thus, the ManD subgroup is not isofunctional and includes D-gluconate dehydratases (GlcDs) that are divergent from the GlcDs that have been characterized in the mandelate racemase subgroup of the ENS (Lamble et al. FEBS Lett. 2004 , 576 , 133 - 136 ) (Ahmed et al. Biochem. J. 2005 , 390 , 529 - 540 ). These observations signal caution for functional assignment based on sequence homology and lay the foundation for the studies of the physiological functions of the GlcDs and the promiscuous ManDs/GlcDs.


Assuntos
Hidroliases/química , Hidroliases/metabolismo , Fosfopiruvato Hidratase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Gluconatos/metabolismo , Hidroliases/genética , Cinética , Dados de Sequência Molecular , Mutação , Fosfopiruvato Hidratase/química , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Açúcares Ácidos/metabolismo
11.
J Struct Funct Genomics ; 14(2): 31-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23535894

RESUMO

Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin ß2 or Kapß2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapß2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapß2 is conserved throughout eukaryotes. Kap104, the Kapß2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapß2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapß2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapß2·PY-NLS structures.


Assuntos
Sinais de Localização Nuclear/química , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/química , Sequência de Aminoácidos , Sítios de Ligação , Núcleo Celular/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo
12.
Biochemistry ; 52(1): 239-53, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23214453

RESUMO

A member of the amidohydrolase superfamily, BmulJ_04915 from Burkholderia multivorans, of unknown function was determined to hydrolyze a series of sugar lactones: L-fucono-1,4-lactone, D-arabino-1,4-lactone, L-xylono-1,4-lactone, D-lyxono-1,4-lactone, and L-galactono-1,4-lactone. The highest activity was shown for L-fucono-1,4-lactone with a k(cat) value of 140 s(-1) and a k(cat)/K(m) value of 1.0 × 10(5) M(-1) s(-1) at pH 8.3. The enzymatic product of an adjacent L-fucose dehydrogenase, BmulJ_04919, was shown to be L-fucono-1,5-lactone via nuclear magnetic resonance spectroscopy. L-Fucono-1,5-lactone is unstable and rapidly converts nonenzymatically to L-fucono-1,4-lactone. Because of the chemical instability of L-fucono-1,5-lactone, 4-deoxy-L-fucono-1,5-lactone was enzymatically synthesized from 4-deoxy-L-fucose using L-fucose dehydrogenase. BmulJ_04915 hydrolyzed 4-deoxy-L-fucono-1,5-lactone with a k(cat) value of 990 s(-1) and a k(cat)/K(m) value of 8.0 × 10(6) M(-1) s(-1) at pH 7.1. The protein does not require divalent cations in the active site for catalytic activity. BmulJ_04915 is the second enzyme from cog3618 of the amidohydrolase superfamily that does not require a divalent metal for catalytic activity. BmulJ_04915 is the first enzyme that has been shown to catalyze the hydrolysis of either L-fucono-1,4-lactone or L-fucono-1,5-lactone. The structures of the fuconolactonase and the fucose dehydrogenase were determined by X-ray diffraction methods.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Burkholderia/enzimologia , Fucose/metabolismo , Lactonas/metabolismo , Burkholderia/química , Burkholderia/metabolismo , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , NADP/metabolismo , Conformação Proteica , Especificidade por Substrato , Açúcares Ácidos/metabolismo
13.
J Am Chem Soc ; 135(2): 795-803, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23256477

RESUMO

Of the over 22 million protein sequences in the nonredundant TrEMBL database, fewer than 1% have experimentally confirmed functions. Structure-based methods have been used to predict enzyme activities from experimentally determined structures; however, for the vast majority of proteins, no such structures are available. Here, homology models of a functionally uncharacterized amidohydrolase from Agrobacterium radiobacter K84 (Arad3529) were computed on the basis of a remote template structure. The protein backbone of two loops near the active site was remodeled, resulting in four distinct active site conformations. Substrates of Arad3529 were predicted by docking of 57,672 high-energy intermediate (HEI) forms of 6440 metabolites against these four homology models. On the basis of docking ranks and geometries, a set of modified pterins were suggested as candidate substrates for Arad3529. The predictions were tested by enzymology experiments, and Arad3529 deaminated many pterin metabolites (substrate, k(cat)/K(m) [M(-1) s(-1)]): formylpterin, 5.2 × 10(6); pterin-6-carboxylate, 4.0 × 10(6); pterin-7-carboxylate, 3.7 × 10(6); pterin, 3.3 × 10(6); hydroxymethylpterin, 1.2 × 10(6); biopterin, 1.0 × 10(6); d-(+)-neopterin, 3.1 × 10(5); isoxanthopterin, 2.8 × 10(5); sepiapterin, 1.3 × 10(5); folate, 1.3 × 10(5), xanthopterin, 1.17 × 10(5); and 7,8-dihydrohydroxymethylpterin, 3.3 × 10(4). While pterin is a ubiquitous oxidative product of folate degradation, genomic analysis suggests that the first step of an undescribed pterin degradation pathway is catalyzed by Arad3529. Homology model-based virtual screening, especially with modeling of protein backbone flexibility, may be broadly useful for enzyme function annotation and discovering new pathways and drug targets.


Assuntos
Aminoidrolases/química , Simulação por Computador , Modelos Moleculares , Agrobacterium/enzimologia , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Homologia de Sequência , Especificidade por Substrato
14.
J Am Chem Soc ; 135(37): 13927-33, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23968233

RESUMO

A substantial challenge for genomic enzymology is the reliable annotation for proteins of unknown function. Described here is an interrogation of uncharacterized enzymes from the amidohydrolase superfamily using a structure-guided approach that integrates bioinformatics, computational biology, and molecular enzymology. Previously, Tm0936 from Thermotoga maritima was shown to catalyze the deamination of S-adenosylhomocysteine (SAH) to S-inosylhomocysteine (SIH). Homologues of Tm0936 homologues were identified, and substrate profiles were proposed by docking metabolites to modeled enzyme structures. These enzymes were predicted to deaminate analogues of adenosine including SAH, 5'-methylthioadenosine (MTA), adenosine (Ado), and 5'-deoxyadenosine (5'-dAdo). Fifteen of these proteins were purified to homogeneity, and the three-dimensional structures of three proteins were determined by X-ray diffraction methods. Enzyme assays supported the structure-based predictions and identified subgroups of enzymes with the capacity to deaminate various combinations of the adenosine analogues, including the first enzyme (Dvu1825) capable of deaminating 5'-dAdo. One subgroup of proteins, exemplified by Moth1224 from Moorella thermoacetica, deaminates guanine to xanthine, and another subgroup, exemplified by Avi5431 from Agrobacterium vitis S4, deaminates two oxidatively damaged forms of adenine: 2-oxoadenine and 8-oxoadenine. The sequence and structural basis of the observed substrate specificities were proposed, and the substrate profiles for 834 protein sequences were provisionally annotated. The results highlight the power of a multidisciplinary approach for annotating enzymes of unknown function.


Assuntos
Nucleosídeo Desaminases/química , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Cinética , Modelos Moleculares , Estrutura Molecular , Nucleosídeo Desaminases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 106(38): 16096-101, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805264

RESUMO

Lewis X (Le(x))-containing glycans play important roles in numerous cellular processes. However, the absence of robust, facile, and cost-effective methods for the synthesis of Le(x) and its structurally related analogs has severely hampered the elucidation of the specific functions of these glycan epitopes. Here we demonstrate that chemically defined guanidine 5'-diphosphate-beta-l-fucose (GDP-fucose), the universal fucosyl donor, the Le(x) trisaccharide, and their C-5 substituted derivatives can be synthesized on preparative scales, using a chemoenzymatic approach. This method exploits l-fucokinase/GDP-fucose pyrophosphorylase (FKP), a bifunctional enzyme isolated from Bacteroides fragilis 9343, which converts l-fucose into GDP-fucose via a fucose-1-phosphate (Fuc-1-P) intermediate. Combining the activities of FKP and a Helicobacter pylori alpha1,3 fucosyltransferase, we prepared a library of Le(x) trisaccharide glycans bearing a wide variety of functional groups at the fucose C-5 position. These neoglycoconjugates will be invaluable tools for studying Le(x)-mediated biological processes.


Assuntos
Proteínas de Bactérias/metabolismo , Guanosina Difosfato Fucose/biossíntese , Nucleotidiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polissacarídeos/biossíntese , Trifosfato de Adenosina/metabolismo , Bacteroides fragilis/enzimologia , Catálise , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Guanosina Difosfato Fucose/química , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Antígenos CD15/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polissacarídeos/química , Especificidade por Substrato
16.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36066492

RESUMO

Cell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs). Prospective sorting with anti-HS scFvs identifies functionally distinct glycotypes within heterogeneous pools of mouse and human hematopoietic progenitor cells and enables further stratification of immunophenotypically pure megakaryocyte-erythrocyte progenitors. This stratification correlates with expression of a heptad of HS-related genes that is reflective of the HS epitope recognized by specific anti-HS scFvs. While we show that HS glycotyping provides an orthogonal set of tools for resolution of hematopoietic lineages, we anticipate broad utility of this approach in defining and isolating novel, viable cell types across diverse tissues and species.


Assuntos
Hematopoese , Anticorpos de Cadeia Única , Citometria de Fluxo , Hematopoese/genética , Células-Tronco Hematopoéticas , Heparitina Sulfato , Humanos , Estudos Prospectivos
17.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673568

RESUMO

To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.


Assuntos
Infecções por Citomegalovirus/metabolismo , Infecções por HIV/metabolismo , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia , Animais , Células Apresentadoras de Antígenos/imunologia , Produtos Biológicos , Linfócitos T CD8-Positivos/citologia , Citomegalovirus , Células HEK293 , Antígeno HLA-A2/metabolismo , Humanos , Técnicas In Vitro , Células Jurkat , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Ligantes , Camundongos , Camundongos SCID , Peptídeos , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia
18.
Sci Rep ; 11(1): 19220, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584159

RESUMO

Targeted pharmacologic activation of antigen-specific (AgS) T cells may bypass limitations inherent in current T cell-based cancer therapies. We describe two immunotherapeutics platforms for selective delivery of costimulatory ligands and peptide-HLA (pHLA) to AgS T cells. We engineered and deployed on these platforms an affinity-attenuated variant of interleukin-2, which selectively expands oligoclonal and polyfunctional AgS T cells in vitro and synergizes with CD80 signals for superior proliferation versus peptide stimulation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Proteínas Recombinantes de Fusão/imunologia , Animais , Antígeno B7-1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Mutação , Neoplasias/imunologia , Peptídeos/genética , Peptídeos/imunologia , Cultura Primária de Células , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética
19.
PLoS One ; 15(6): e0233578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497097

RESUMO

The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Proteínas Mutantes/metabolismo , Animais , Antígenos de Superfície/metabolismo , Antígeno B7-1/genética , Antígeno B7-H1/genética , Sítios de Ligação , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transfecção
20.
ACS Cent Sci ; 1(2): 77-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258173

RESUMO

Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-hpnC, hpnD, hpnE, and hpnF-for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While hpnF is known to encode a squalene cyclase, the functions for hpnC, hpnD, and hpnE are not rigorously established. The hpnC, hpnD, and hpnE genes from Zymomonas mobilis and Rhodopseudomonas palustris were cloned into Escherichia coli, a bacterium that does not contain genes homologous to hpnC, hpnD, and hpnE, and their functions were established in vitro and in vivo. HpnD catalyzes formation of presqualene diphosphate (PSPP) from two molecules of FPP; HpnC converts PSPP to hydroxysqualene (HSQ); and HpnE, a member of the amine oxidoreductase family, reduces HSQ to SQ. Collectively the reactions catalyzed by these three enzymes constitute a new pathway for biosynthesis of SQ in bacteria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa