Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697435

RESUMO

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Instabilidade Genômica , Recidiva Local de Neoplasia , Estruturas R-Loop , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239348

RESUMO

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Malária/genética , Plasmodium falciparum/química , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/ultraestrutura , Humanos , Cinética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica
3.
Nucleic Acids Res ; 47(3): 1225-1238, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462309

RESUMO

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 µM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/química , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
J Biol Chem ; 294(17): 6986-7001, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30842263

RESUMO

The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.


Assuntos
Expressão Gênica , Proteína Huntingtina/genética , Mutação , Animais , Clonagem Molecular , Humanos , Proteína Huntingtina/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Spodoptera
5.
Nature ; 504(7478): 172-6, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24162852

RESUMO

Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of ß-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and ß-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer's disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where ß-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Membrana Lisossomal/química , Modelos Moleculares , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
6.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26121405

RESUMO

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Assuntos
Anticorpos Monoclonais/química , Especificidade de Anticorpos , Cromatina/química , Imunoprecipitação/métodos , Proteômica/métodos , Clonagem Molecular , Biologia Computacional/métodos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Biblioteca de Peptídeos , Proteínas/química , Proteoma , Reprodutibilidade dos Testes
7.
Biochem J ; 449(1): 151-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22989411

RESUMO

WDR5 (WD40 repeat protein 5) is an essential component of the human trithorax-like family of SET1 [Su(var)3-9 enhancer-of-zeste trithorax 1] methyltransferase complexes that carry out trimethylation of histone 3 Lys4 (H3K4me3), play key roles in development and are abnormally expressed in many cancers. In the present study, we show that the interaction between WDR5 and peptides from the catalytic domain of MLL (mixed-lineage leukaemia protein) (KMT2) can be antagonized with a small molecule. Structural and biophysical analysis show that this antagonist binds in the WDR5 peptide-binding pocket with a Kd of 450 nM and inhibits the catalytic activity of the MLL core complex in vitro. The degree of inhibition was enhanced at lower protein concentrations consistent with a role for WDR5 in directly stabilizing the MLL multiprotein complex. Our data demonstrate inhibition of an important protein-protein interaction and form the basis for further development of inhibitors of WDR5-dependent enzymes implicated in MLL-rearranged leukaemias or other cancers.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia
8.
J Med Chem ; 67(5): 3467-3503, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38372781

RESUMO

Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Humanos , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Animais Geneticamente Modificados , Relação Estrutura-Atividade
9.
PNAS Nexus ; 3(4): pgae153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665159

RESUMO

Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Šcryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.

10.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37390814

RESUMO

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Assuntos
Proteína Huntingtina , Proteínas Nucleares , Microscopia Crioeletrônica , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
11.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37996079

RESUMO

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Biblioteca Gênica , Ligantes , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-22298003

RESUMO

Dipeptidyl peptidase 10 (DPP10, DPPY) is an inactive peptidase associated with voltage-gated potassium channels, acting as a modulator of their electrophysiological properties, cell-surface expression and subcellular localization. Because potassium channels are important disease targets, biochemical and structural characterization of their interaction partners was sought. DPP10 was cloned and expressed using an insect-cell system and the protein was purified via His-tag affinity and size-exclusion chromatography. Crystals obtained by the sitting-drop method were orthorhombic, belonging to space group P2(1)2(1)2(1) with unit-cell parameters a = 80.91, b = 143.73, c = 176.25 Å. A single solution with two molecules in the asymmetric unit was found using the structure of DPP6 (also called DPPX; PDB entry 1xfd) as the search model in a molecular replacement protocol.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência
13.
ACS Chem Biol ; 17(9): 2495-2506, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35767833

RESUMO

Diacylglycerol kinase ε (DGKε), an enzyme of the phosphatidylinositol (PI) cycle, bears a highly conserved hydrophobic N-terminal segment, which was proposed to anchor the enzyme into the membrane. However, the importance of this segment to the DGKε function remains to be determined. To address this question, it is here reported an in silico and in vitro combined research strategy. Capitalizing on the AlphaFold 2.0 predicted structure of human DGKε, it is shown that its hydrophobic N-terminal segment anchors it into the membrane via a transmembrane α-helix. Coarse-grained based elastic network model studies showed that a conformational change in the hydrophobic N-terminal segment determines the proximity between the active site of DGKε and the membrane-water interface, likely regulating its kinase activity. In vitro studies with a purified DGKε construct lacking the hydrophobic N-terminal segment (His-SUMO*-Δ50-DGKε) corroborated the role of the N-terminus in regulating DGKε enzymatic properties. The comparison between the enzymatic properties of DGKε and His-SUMO*-Δ50-DGKε showed that the conserved N-terminal segment markedly inhibits the enzyme activity and its sensitivity to membrane intrinsic negative curvature, while also playing a role in the modulation of the enzyme by phosphatidylserine. On the other hand, this segment did not strongly affect its diacylglycerol acyl chain specificity, the modulation of the enzyme by membrane morphological changes, or the activation by phosphatidic acid-rich lipid domains. Hence, these results suggest that the conservation of the hydrophobic N-terminal segment of DGKε throughout evolution guaranteed not only membrane anchorage but also an efficient and elegant manner to regulate the rate of the PI cycle.


Assuntos
Diacilglicerol Quinase , Diglicerídeos , Diacilglicerol Quinase/química , Diglicerídeos/química , Humanos , Fosfatidilinositóis , Fosfatidilserinas , Água
14.
Commun Biol ; 4(1): 1374, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880419

RESUMO

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Assuntos
Éxons , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura
16.
Biochemistry ; 47(36): 9553-64, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702514

RESUMO

Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.


Assuntos
Lipase/química , Lipídeos/química , Animais , Inibidores da Colinesterase/química , Cristalografia por Raios X , Glicosilação , Humanos , Cinética , Lipase/genética , Lipase/metabolismo , Lipídeos/genética , Paraoxon/química , Estrutura Terciária de Proteína/fisiologia , Ratos
17.
J Biomol Screen ; 21(3): 290-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701100

RESUMO

N(6)-methyladenosine (m(6)A) is the most common reversible internal modification in mammalian RNA. Changes in m(6)A levels have been implicated in a variety of cellular processes, including nuclear RNA export, control of protein translation, and protein splicing, and they have been linked to obesity, cancer, and other human diseases. METTL3 and METTL14 are N(6)-adenosine methyltransferases that work more efficiently in a stable METTL3-METTL14 heterodimer complex (METTL3-14). ALKBH5 is an m(6)A-RNA demethylase that belongs to the AlkB family of dioxygenases. We report the development of radioactivity-based assays for kinetic characterization of m(6)A-RNA modifications by METTL3-14 complex and ALKBH5 and provide optimal assay conditions suitable for screening for ligands in a 384-well format with Z' factors of 0.78 and 0.77, respectively.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Bioensaio/métodos , Descoberta de Drogas/métodos , Ligantes , Metiltransferases/metabolismo , Ensaio Radioligante/métodos , Humanos , Cinética , Ligação Proteica
18.
Sci Rep ; 5: 8769, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25740212

RESUMO

The voltage-gated potassium channel family (Kv) constitutes the most diverse class of ion channels in the nervous system. Dipeptidyl peptidase 10 (DPP10) is an inactive peptidase that modulates the electrophysiological properties, cell-surface expression and subcellular localization of voltage-gated potassium channels. As a consequence, DPP10 malfunctioning is associated with neurodegenerative conditions like Alzheimer and fronto-temporal dementia, making this protein an attractive drug target. In this work, we report the crystal structure of DPP10 and compare it to that of DPP6 and DPP4. DPP10 belongs to the S9B serine protease subfamily and contains two domains with two distinct folds: a ß-propeller and a classical α/ß-hydrolase fold. The catalytic serine, however, is replaced by a glycine, rendering the protein enzymatically inactive. Difference in the entrance channels to the active sites between DPP10 and DPP4 provide an additional rationale for the lack of activity. We also characterize the DPP10 dimer interface focusing on the alternative approach for designing drugs able to target protein-protein interactions.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Modelos Moleculares , Conformação Proteica , Domínio Catalítico , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Glicosilação , Humanos , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Canais de Potássio Shal/metabolismo
19.
PLoS One ; 10(10): e0139695, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26437229

RESUMO

We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols.


Assuntos
Formação de Anticorpos/fisiologia , Antígenos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Recombinantes/imunologia , Clonagem Molecular , Humanos , Biblioteca de Peptídeos
20.
PLoS One ; 8(12): e83737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367611

RESUMO

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.


Assuntos
Carcinogênese/genética , Domínio Catalítico , Coenzimas/metabolismo , Mutação , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína Potenciadora do Homólogo 2 de Zeste , Ativação Enzimática , Humanos , Linfoma/genética , Linfoma/patologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Recidiva
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa