Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 315: 115171, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504186

RESUMO

Urban street trees are a key part of public green infrastructure in many cities, however, leaf litter on streets is a critical biogenic source of phosphorus (P) in urban stormwater runoff during Fall. This study identified mass of street leaf litter (Mleaf) and antecedent dry days (ADD) as the top two explanatory parameters that have significant predictive power of event end-of-pipe P concentrations through multiple linear regression (MLR) analysis. Mleaf and volume of runoff (Vol) were the top two key explanatory parameters of event end-of-pipe P loads. Two-predictor MLR models were developed with these explanatory parameters using a 40-storm dataset derived from six small urban residential watersheds in Wisconsin, USA, and evaluated using storms specific to each study basin. The MLR model validation results indicated sensitivity to storm composition in the datasets. Our analysis shows selected parameters can be used by environmental managers to facilitate end-of-pipe P prediction in urban areas. This information can be used to reduce the amount of P in stormwater runoff by adjusting the timing and frequency of municipal leaf collection and street cleaning programs in urban areas.


Assuntos
Fósforo , Poluentes Químicos da Água , Cidades , Monitoramento Ambiental , Fósforo/análise , Chuva , Estações do Ano , Árvores , Movimentos da Água , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432661

RESUMO

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Assuntos
Água Subterrânea , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Chuva , Estados Unidos
3.
J Environ Manage ; 251: 109510, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563051

RESUMO

Three permeable pavements were evaluated for their ability to improve the quality of stormwater runoff over a 22-month period in Madison, Wisconsin. Using a lined system with no internal water storage, permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA) were able to significantly remove sediment and sediment-bound pollutant loads from runoff originating from an asphalt parking lot five times larger than the receiving permeable pavement area. Reductions in total suspended solids were similar for all three surfaces at approximately 60 percent. Clogging occurred after approximately one year, primarily due to winter sand application that led to high sediment load in spring runoff. Winter road salt application resulted in high chloride load that was initially attenuated in all three permeable pavements but later released during subsequent spring runoff events. Total phosphorus load was reduced by nearly 20 percent for PICP and PA, and 43 percent for PC. These values were likely tempered by the export of dissolved phosphorus observed in PICP and PA, but not PC. Average removal efficiencies for metals were 40, 42, and 49 percent in PA, PICP, and PC, respectively. A median pH of 10.2 in PC effluent could explain elevated removal efficiency of phosphorus and select metals in PC over PICP and PA (median = 7.5 and 7.8, respectfully) through enhanced precipitation. Elevated pH values in PC may also have led to higher removal efficiencies for select metals than PICP or PA. The environmental benefits as well as potential unintended consequences of stormwater practices like permeable pavement that utilize infiltration as a form of treatment warrant consideration in management of urban runoff.


Assuntos
Monitoramento Ambiental , Movimentos da Água , Fósforo , Chuva , Qualidade da Água , Wisconsin
4.
J Environ Monit ; 14(4): 1138-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22358077

RESUMO

A new water sample collection system was developed to improve representation of solids entrained in urban stormwater by integrating water-quality samples from the entire water column, rather than a single, fixed point. The depth-integrated sample arm (DISA) was better able to characterize suspended-sediment concentration and particle size distribution compared to fixed-point methods when tested in a controlled laboratory environment. Median suspended-sediment concentrations overestimated the actual concentration by 49 and 7% when sampling the water column at 3- and 4-points spaced vertically throughout the water column, respectively. Comparatively, sampling only at the bottom of the pipe, the fixed-point overestimated the actual concentration by 96%. The fixed-point sampler also showed a coarser particle size distribution compared to the DISA which was better able to reproduce the average distribution of particles in the water column over a range of hydraulic conditions. These results emphasize the need for a water sample collection system that integrates the entire water column, rather than a single, fixed point to properly characterize the concentration and distribution of particles entrained in stormwater pipe flow.


Assuntos
Monitoramento Ambiental/métodos , Estatística como Assunto , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Cidades , Sedimentos Geológicos/química
5.
Sci Total Environ ; 806(Pt 3): 151296, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736755

RESUMO

Trees in the urban right-of-way areas have increasingly been considered part of a suite of green infrastructure practices used to manage stormwater runoff. A paired-catchment experimental design (with street tree removal as the treatment) was used to assess how street trees affect major hydrologic fluxes in a typical residential stormwater collection and conveyance network. The treatment consisted of removing 29 green ash (Fraxinus pennsylvanica) and two Norway maple (Acer platanoides) street trees from a medium-density residential area. Tree removal resulted in an estimated 198 m3 increase in surface runoff volume compared to the control catchment over the course of the study. This increase accounted for 4% of the total measured runoff after trees were removed. Despite significant changes to runoff volume (p ≤ 0.10), peak discharge was generally not affected by tree removal. On a per-tree basis, 66 L of rainfall per m2 of canopy was lost that would have otherwise been intercepted and stored. Runoff volume reduction benefit was estimated at 6376 L per tree. These values experimentally document per-capita retention services rendered by trees over a growing season with 42 storm events. These values are within the range reported by previous studies, which largely relied on simulation. This study provides catchment scale evidence that reducing stormwater runoff is one of many ecosystem services provided by street trees. This study quantifies these services, based on site conditions and a mix of deciduous species, and serves to improve our ability to account for this important yet otherwise poorly constrained hydrologic service. Engineers, city planners, urban foresters, and others involved with the management of urban stormwater can use this information to better understand tradeoffs involved in using green infrastructure to reduce urban runoff burden.


Assuntos
Árvores , Movimentos da Água , Cidades , Ecossistema , Hidrologia , Chuva
6.
Water Res ; 223: 118968, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988331

RESUMO

Urban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns. We highlight micropollutants to be prioritized due to their high occurrence and critical concentration levels compared to environmental quality standards. These top-listed micropollutants include contaminants from all chemical classes (pesticides, heavy metals, polycyclic aromatic hydrocarbons, personal care products, pharmaceuticals, and industrial and household chemicals). Analysis of over 30,000 event mean concentrations shows a large fraction of measurements (> 50%) were below the limit of quantification, stressing the need for reliable, standard monitoring procedures. High variability was observed among events and sites, with differences between micropollutant classes. The number of events required for a reliable estimate of site mean concentrations (error bandwidth of 1 around the "true" value) depends on the individual micropollutant. The median minimum number of events is 7 for CSO (2 to 31, 80%-interquantile) and 6 for SWO (1 to 25 events, 80%-interquantile). Our analysis indicates the minimum number of sites needed to assess global pollution levels and our data collection and analysis can be used to estimate the required number of sites for an urban catchment. Our data-driven analysis demonstrates how future wet-weather monitoring programs will be more effective if the consequences of high variability inherent in urban wet-weather discharges are considered.


Assuntos
Metais Pesados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Metais Pesados/análise , Praguicidas/análise , Preparações Farmacêuticas , Hidrocarbonetos Policíclicos Aromáticos/análise , Chuva , Água/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
7.
Water Environ Res ; 83(4): 347-57, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21553590

RESUMO

A new depth-integrated sample arm (DISA) was developed to improve the representation of solids in stormwater, both organic and inorganic, by collecting a water quality sample from multiple points in the water column. Data from this study demonstrate the idea of vertical stratification of solids in storm sewer runoff. Concentrations of suspended sediment in runoff were statistically greater using a fixed rather than multipoint collection system. Median suspended sediment concentrations measured at the fixed location (near the pipe invert) were approximately double those collected using the DISA. In general, concentrations and size distributions of suspended sediment decreased with increasing vertical distance from the storm sewer invert. Coarser particles tended to dominate the distribution of solids near the storm sewer invert as discharge increased. In contrast to concentration and particle size, organic material, to some extent, was distributed homogenously throughout the water column, likely the result of its low specific density, which allows for thorough mixing in less turbulent water.


Assuntos
Poluentes da Água , Tamanho da Partícula
8.
Sci Total Environ ; 743: 140662, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663685

RESUMO

In urban watersheds, street tree leaf litter is a critical biogenic source of phosphorus (P) in stormwater runoff. Stormwater extracts P from leaf litter and transports it, through the storm sewer network, to a receiving waterbody potentially causing downstream eutrophication. The goal of this study is to understand P leaching dynamics of two prevalent tree species (Norway maple (Acer platanoides) and green ash (Fraxinus pennsylvanica)) in three urban residential watersheds in Madison, Wisconsin, USA. Leaf litter was collected from the three basins during Fall 2017 and 2018. Laboratory experiments showed an initial rapid total dissolved phosphorus (TDP) release that gradually plateaued over a 48-hour period. The total TDP released from Norway maple (2.10 mg g-1) was greater than from green ash (1.60 mg g-1). Within the same species, increased fragmentation of leaves led to more rapid initial TDP release, but not greater total TDP release. Increased aging of senescent leaves decreased total TDP release. Incubation temperature and volume of water in contact with leaves may not be critical factors affecting TDP leaching dynamics. Predictive equations were derived to characterize time-variable TDP release of both Norway maple and green ash leaves. Potential TDP release from leaf litter estimated using these equations was compared with field-measured end-of-pipe TDP loads in one of the study watersheds. Our results indicate that preventing leaf litter from accumulating in streets is an important stormwater quality control measure.


Assuntos
Acer , Fraxinus , Noruega , Fósforo , Folhas de Planta , Wisconsin
9.
Sci Total Environ ; 673: 656-667, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30999106

RESUMO

Urbanization can dramatically alter stormwater, both the quantity and quality, by engendering larger peak flows and through the introduction of contaminants into runoff. The current study builds on previous research that developed relationships between a suite of nonpoint source contaminants, known as trace organic contaminants (TOrCs), and hydrologic measurements for a series of storms (one site had 15 storms and the other had 19 storms) in Madison, WI, by creating statistical and deterministic models. Correlations and regressions were calculated between TOrC loads and hydrologic measurements for a series of storms for both a commercial site and a high-density residential site. From the regressions, it became evident that loading responses to precipitation were not the same between the two land covers for some TOrCs, indicating varying load responses for TOrCs depending on land cover. The regressions were utilized in the Source Loading and Management Model for Windows (WinSLAMM), an event-based hydrologic and water-quality model, to demonstrate that it can be used to model novel contaminants. The regressions were also used to estimate mean annual loads of TOrCs from all commercial and high-density residential areas in Madison, WI, for the watersheds to which Madison discharges its stormwater. The mean annual loads varied between grams per year to tens of thousands of grams per year depending on the TOrC and watershed. This work will ultimately allow managers to simulate the presence of, establish total maximum daily loads for, and mitigate the loads of TOrCs through stormwater best management practices.

10.
J Environ Qual ; 36(1): 226-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17215230

RESUMO

Sand-sized particles (>63 microm) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 microm) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration.


Assuntos
Sedimentos Geológicos/química , Água/química , Metais/análise , Metais/isolamento & purificação , Tamanho da Partícula
11.
Sci Total Environ ; 571: 124-33, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27470671

RESUMO

While the sources of nutrients to urban stormwater are many, the primary contributor is often organic detritus, especially in areas with dense overhead tree canopy. One way to remove organic detritus before it becomes entrained in runoff is to implement a city-wide leaf collection and street cleaning program. Improving our knowledge of the potential reduction of nutrients to stormwater through removal of leaves and other organic detritus on streets could help tailor more targeted municipal leaf collection programs. This study characterized an upper ideal limit in reductions of total and dissolved forms of phosphorus and nitrogen in stormwater through implementation of a municipal leaf collection and street cleaning program in Madison, WI, USA. Additional measures were taken to remove leaf litter from street surfaces prior to precipitation events. Loads of total and dissolved phosphorus were reduced by 84 and 83% (p<0.05), and total and dissolved nitrogen by 74 and 71% (p<0.05) with an active leaf removal program. Without leaf removal, 56% of the annual total phosphorus yield (winter excluded) was due to leaf litter in the fall compared to 16% with leaf removal. Despite significant reductions in load, total nitrogen showed only minor changes in fall yields without and with leaf removal at 19 and 16%, respectively. The majority of nutrient concentrations were in the dissolved fraction making source control through leaf removal one of the few treatment options available to environmental managers when reducing the amount of dissolved nutrients in stormwater runoff. Subsequently, the efficiency, frequency, and timing of leaf removal and street cleaning are the primary factors to consider when developing a leaf management program.

12.
Sci Total Environ ; 521-522: 11-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25828407

RESUMO

The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2°C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery.


Assuntos
Mudança Climática , Rios/química , Temperatura , Truta/fisiologia , Animais , Ecossistema , Wisconsin
13.
Sci Total Environ ; 444: 381-91, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23280296

RESUMO

Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.


Assuntos
Monitoramento Ambiental/métodos , Metais/análise , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/toxicidade , Alcatrão , Metais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Rios/química , Urbanização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa