Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7941): 739-747, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517598

RESUMO

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Assuntos
Eixo Encéfalo-Intestino , Dopamina , Exercício Físico , Microbioma Gastrointestinal , Motivação , Corrida , Animais , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Dopamina/metabolismo , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Células Receptoras Sensoriais/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , Modelos Animais , Humanos , Estriado Ventral/citologia , Estriado Ventral/metabolismo , Corrida/fisiologia , Corrida/psicologia , Recompensa , Individualidade
2.
Mol Ther ; 31(12): 3564-3578, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37919903

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Receptores de Antígenos de Linfócitos T/genética
3.
J Infect Dis ; 228(Suppl 4): S249-S258, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788506

RESUMO

Although nearly a century has elapsed since the discovery of penicillin, bacterial infections remain a major global threat. Global antibiotic use resulted in an astounding 42 billion doses of antibiotics administered in 2015 with 128 billion annual doses expected by 2030. This overuse of antibiotics has led to the selection of multidrug-resistant "super-bugs," resulting in increasing numbers of patients being susceptible to life-threatening infections with few available therapeutic options. New clinical tools are therefore urgently needed to identify bacterial infections and monitor response to antibiotics, thereby limiting overuse of antibiotics and improving overall health. Next-generation molecular imaging affords unique opportunities to target and identify bacterial infections, enabling spatial characterization as well as noninvasive, temporal monitoring of the natural course of the disease and response to therapy. These emerging noninvasive imaging approaches could overcome several limitations of current tools in infectious disease, such as the need for biological samples for testing with their associated sampling bias. Imaging of living bacteria can also reveal basic biological insights about their behavior in vivo.


Assuntos
Infecções Bacterianas , Humanos , Infecções Bacterianas/diagnóstico por imagem , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico , Bactérias , Penicilinas/uso terapêutico , Imagem Molecular
4.
Mol Ther ; 28(1): 42-51, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668558

RESUMO

Cell-based therapeutics have considerable promise across diverse medical specialties; however, reliable human imaging of the distribution and trafficking of genetically engineered cells remains a challenge. We developed positron emission tomography (PET) probes based on the small-molecule antibiotic trimethoprim (TMP) that can be used to image the expression of the Escherichia coli dihydrofolate reductase enzyme (eDHFR) and tested the ability of [18F]-TMP, a fluorine-18 probe, to image primary human chimeric antigen receptor (CAR) T cells expressing the PET reporter gene eDHFR, yellow fluorescent protein (YFP), and Renilla luciferase (rLuc). Engineered T cells showed an approximately 50-fold increased bioluminescent imaging signal and 10-fold increased [18F]-TMP uptake compared to controls in vitro. eDHFR-expressing anti-GD2 CAR T cells were then injected into mice bearing control GD2- and GD2+ tumors. PET/computed tomography (CT) images acquired on days 7 and 13 demonstrated early residency of CAR T cells in the spleen followed by on-target redistribution to the GD2+ tumors. This was corroborated by autoradiography and anti-human CD8 immunohistochemistry. We found a high sensitivity of detection for identifying tumor-infiltrating CD8 CAR T cells, ∼11,000 cells per mm3. These data suggest that the [18F]-TMP/eDHFR PET pair offers important advantages that could better allow investigators to monitor immune cell trafficking to tumors in patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Escherichia coli/enzimologia , Genes Reporter , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptores de Antígenos Quiméricos/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Feminino , Radioisótopos de Flúor , Gangliosídeos/metabolismo , Células HCT116 , Voluntários Saudáveis , Xenoenxertos/diagnóstico por imagem , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Baço/diagnóstico por imagem , Baço/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima
5.
Proc Natl Acad Sci U S A ; 114(31): 8372-8377, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716936

RESUMO

There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/diagnóstico , Escherichia coli/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/metabolismo , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/metabolismo , Trimetoprima/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Radioisótopos de Flúor/química , Células HCT116 , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Compostos Radiofarmacêuticos/farmacologia , Infecções Estafilocócicas/microbiologia , Trimetoprima/química
6.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752318

RESUMO

The discovery of penicillin began the age of antibiotics, which was a turning point in human healthcare. However, to this day, microbial infections are still a concern throughout the world, and the rise of multidrug-resistant organisms is an increasing challenge. To combat this threat, diagnostic imaging tools could be used to verify the causative organism and curb inappropriate use of antimicrobial drugs. Nuclear imaging offers the sensitivity needed to detect small numbers of bacteria in situ. Among nuclear imaging tools, radiolabeled antibiotics traditionally have lacked the sensitivity or specificity necessary to diagnose bacterial infections accurately. One reason for the lack of success is that the antibiotics were often chelated to a radiometal. This was done without addressing the ramifications of how the radiolabeling would impact probe entry to the bacterial cell, or the mechanism of binding to an intracellular target. In this review, we approach bacterial infection imaging through the lens of bacterial specific molecular targets, their intracellular or extracellular location, and discuss radiochemistry strategies to guide future probe development.


Assuntos
Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Animais , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Diagnóstico por Imagem/métodos , Descoberta de Drogas/métodos , Humanos , Penicilinas/uso terapêutico
7.
Mol Ther ; 25(1): 120-126, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129108

RESUMO

There is a need for improved methods to image genetically engineered cells, including immune cells used for cell-based therapy. Given the genetic manipulation inherent to gene therapy, the use of a reporter protein is a logical solution and positron emission tomography (PET) can provide the desired sensitivity and spatial localization. We developed a broadly applicable PET imaging strategy based on the small bacterial protein E. coli dihydrofolate reductase (Ec dhfr) and its highly specific small molecule inhibitor, trimethoprim (TMP). The difference in TMP affinity for bacterial compared to mammalian DHFR suggests that a TMP radioligand would have a low background in unmodified mammalian tissues and high retention in Ec dhfr engineered cells, providing high contrast imaging. Here, we describe the in vitro properties of [11C]TMP and show over 10-fold increased signal in transgenic Ec dhfr cells compared to control. In a mouse xenograft model, [11C]TMP rapidly accumulated in Ec dhfr carrying cells within minutes of intravenous administration. Moreover, [11C]TMP can identify less than a million xenografted cells in a small volume in tissues other than the abdominal compartment. This limit of detection is a clinically relevant number and bodes well for clinical translation especially given that [11C]TMP is an isotopologue of clinically approved antibiotic.


Assuntos
Radioisótopos de Carbono , Genes Reporter , Imagem Molecular , Tomografia por Emissão de Pósitrons/métodos , Trimetoprima , Animais , Linhagem Celular , Camundongos , Sensibilidade e Especificidade , Microtomografia por Raio-X
9.
Drug Discov Today Technol ; 25: 37-43, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29233266

RESUMO

Cancer and neurodegeneration represent two opposite ends of the biological spectrum but contain many common biological mechanisms. Two such mechanisms include the elevated levels of oxidative stress and DNA damage. In this brief review, we describe current approaches for imaging these biological pathways with the molecular imaging technique, Positron Emission Tomography (PET), and the potential of PET imaging studies to measure the efficacy of anticancer drugs and strategies for delaying the progression of neurodegenerative disorders.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Morte Celular , Dano ao DNA , Humanos , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Tomografia por Emissão de Pósitrons , Espécies Reativas de Oxigênio/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(21): 8567-72, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650381

RESUMO

Interactions among neighboring cells underpin many physiological processes ranging from early development to immune responses. When these interactions do not function properly, numerous pathologies, including infection and cancer, can result. Molecular imaging technologies, especially optical imaging, are uniquely suited to illuminate complex cellular interactions within the context of living tissues in the body. However, no tools yet exist that allow the detection of microscopic events, such as two cells coming into close proximity, on a global, whole-animal scale. We report here a broadly applicable, longitudinal strategy for probing interactions among cells in living subjects. This approach relies on the generation of bioluminescent light when two distinct cell populations come into close proximity, with the intensity of the optical signal correlating with relative cellular location. We demonstrate the ability of this reporter strategy to gauge cell-cell proximity in culture models in vitro and then evaluate this approach for imaging tumor-immune cell interactions using a murine breast cancer model. In these studies, our imaging strategy enabled the facile visualization of features that are otherwise difficult to observe with conventional imaging techniques, including detection of micrometastatic lesions and potential sites of tumor immunosurveillance. This proximity reporter will facilitate probing of numerous types of cell-cell interactions and will stimulate the development of similar techniques to detect rare events and pathological processes in live animals.


Assuntos
Comunicação Celular/imunologia , Genes Reporter , Vigilância Imunológica , Neoplasias Mamárias Experimentais/imunologia , Modelos Biológicos , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia
11.
Mol Imaging Biol ; 26(1): 101-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37875748

RESUMO

PURPOSE: Positron emission tomography (PET) image quality can be improved by higher injected activity and/or longer acquisition time, but both may often not be practical in preclinical imaging. Common preclinical radioactive doses (10 MBq) have been shown to cause deterministic changes in biological pathways. Reducing the injected tracer activity and/or shortening the scan time inevitably results in low-count acquisitions which poses a challenge because of the inherent noise introduction. We present an image-based deep learning (DL) framework for denoising lower count micro-PET images. PROCEDURES: For 36 mice, a 15-min [18F]FDG (8.15 ± 1.34 MBq) PET scan was acquired at 40 min post-injection on the Molecubes ß-CUBE (in list mode). The 15-min acquisition (high-count) was parsed into smaller time fractions of 7.50, 3.75, 1.50, and 0.75 min to emulate images reconstructed at 50, 25, 10, and 5% of the full counts, respectively. A 2D U-Net was trained with mean-squared-error loss on 28 high-low count image pairs. RESULTS: The DL algorithms were visually and quantitatively compared to spatial and edge-preserving denoising filters; the DL-based methods effectively removed image noise and recovered image details much better while keeping quantitative (SUV) accuracy. The largest improvement in image quality was seen in the images reconstructed with 10 and 5% of the counts (equivalent to sub-1 MBq or sub-1 min mouse imaging). The DL-based denoising framework was also successfully applied on the NEMA-NU4 phantom and different tracer studies ([18F]PSMA, [18F]FAPI, and [68 Ga]FAPI). CONCLUSION: Visual and quantitative results support the superior performance and robustness in image denoising of the implemented DL models for low statistics micro-PET. This offers much more flexibility in optimizing preclinical, longitudinal imaging protocols with reduced tracer doses or shorter durations.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Algoritmos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador
12.
Nucl Med Biol ; 138-139: 108948, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39277961

RESUMO

Direct fluorination of a tosylate or mesylate precursor has been a wide-spread and reliable way for radio-fluorination. This approach can be difficult to achieve when the precursor cannot be easily obtained or is chemically unstable. A possible alternative method is to radiolabel ethylene ditosylate or 1,3-propanediol di-p-tosylate to form a radiofluorinated synthon. Here we present the automation of a simplified and reliable approach for the two-step fluorination using [18F]FP-TMP, an analog of antibacterial agent trimethoprim. We demonstrate the feasibility of purifying the fluorinated synthon via filtration, and one final HPLC purification on a commercially available Trasis AllinOne module. The overall reaction time for the two-step reaction is around 90 min andthe decay-corrected yield for more than fifty preparations of [18F]FP-TMP is 22 ± 5 % with high radiochemical purity (≥ 90 %) and specific activities (147 ± 107 GBq/µmol). All batches passed pre-established quality control specifications, demonstrating the utility of using this method in tracer syntheses that meet good manufacturing practice (GMP) requirement. This method can be adopted to the syntheses of other radiotracers, such as [18F]FE-TMP, (+)-[18F]F-PHNO and [18F]FFMZ.

13.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326078

RESUMO

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Diagnóstico por Imagem , Organoides/patologia
14.
Science ; 386(6717): 69-75, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39361752

RESUMO

Clostridioides difficile infection (CDI) is an urgent public health threat with limited preventative options. In this work, we developed a messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccine targeting C. difficile toxins and virulence factors. This multivalent vaccine elicited robust and long-lived systemic and mucosal antigen-specific humoral and cellular immune responses across animal models, independent of changes to the intestinal microbiota. Vaccination protected mice from lethal CDI in both primary and recurrent infection models, and inclusion of non-toxin cellular and spore antigens improved decolonization of toxigenic C. difficile from the gastrointestinal tract. Our studies demonstrate mRNA-LNP vaccine technology as a promising platform for the development of novel C. difficile therapeutics with potential for limiting acute disease and promoting bacterial decolonization.


Assuntos
Toxinas Bacterianas , Vacinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Nanopartículas , Vacinas Combinadas , Vacinas de mRNA , Animais , Feminino , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Clostridioides difficile/imunologia , Clostridioides difficile/genética , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/imunologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Imunidade Celular , Imunidade Humoral , Lipossomos , Camundongos Endogâmicos C57BL , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , RNA Mensageiro/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
15.
Radiographics ; 33(3): 781-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23674774

RESUMO

Retained products of conception (RPOC) are a common and treatable complication after delivery or termination of pregnancy. The pathologic diagnosis of RPOC is made based on the presence of chorionic villi, which indicates persistent placental or trophoblastic tissue. In the setting of postpartum hemorrhage, however, distinguishing RPOC from bleeding related to normal postpartum lochia or uterine atony can be clinically challenging. Ultrasonographic (US) evaluation can be particularly helpful in these patients, and a thickened endometrial echo complex (EEC) or a discrete mass in the uterine cavity is a helpful gray-scale US finding that suggests RPOC. However, gray-scale US findings alone are inadequate for accurate diagnosis. Detection of vascularity in a thickened EEC or an endometrial mass at color or power Doppler US increases the positive predictive value for the diagnosis of RPOC. Computed tomography or magnetic resonance imaging may be helpful when US findings are equivocal and typically demonstrates an enhancing intracavitary mass in patients with RPOC. Diagnostic pitfalls are rare but may include highly vascular RPOC, which can be mistaken for a uterine arteriovenous malformation; true arteriovenous malformations of the uterus; invasive moles; blood clot; and subinvolution of the placental implantation site.


Assuntos
Aumento da Imagem/métodos , Placenta Retida/diagnóstico por imagem , Placenta Retida/patologia , Hemorragia Pós-Parto/diagnóstico por imagem , Hemorragia Pós-Parto/patologia , Ultrassonografia/métodos , Diagnóstico Diferencial , Feminino , Humanos , Gravidez
16.
Nat Commun ; 14(1): 7071, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923771

RESUMO

Temporal control of protein levels in cells and living animals can be used to improve our understanding of protein function. In addition, control of engineered proteins could be used in therapeutic applications. PRoteolysis-TArgeting Chimeras (PROTACs) have emerged as a small-molecule-driven strategy to achieve rapid, post-translational regulation of protein abundance via recruitment of an E3 ligase to the target protein of interest. Here, we develop several PROTAC molecules by covalently linking the antibiotic trimethoprim (TMP) to pomalidomide, a ligand for the E3 ligase, Cereblon. These molecules induce degradation of proteins of interest (POIs) genetically fused to a small protein domain, E. coli dihydrofolate reductase (eDHFR), the molecular target of TMP. We show that various eDHFR-tagged proteins can be robustly degraded to 95% of maximum expression with PROTAC molecule 7c. Moreover, TMP-based PROTACs minimally affect the expression of immunomodulatory imide drug (IMiD)-sensitive neosubstrates using proteomic and biochemical assays. Finally, we show multiplexed regulation with another known degron-PROTAC pair, as well as reversible protein regulation in a rodent model of metastatic cancer, demonstrating the formidable strength of this system. Altogether, TMP PROTACs are a robust approach for selective and reversible degradation of eDHFR-tagged proteins in vitro and in vivo.


Assuntos
Proteínas de Escherichia coli , Tetra-Hidrofolato Desidrogenase , Animais , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Quimera de Direcionamento de Proteólise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trimetoprima/farmacologia , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
17.
J Biol Chem ; 286(13): 11307-13, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262969

RESUMO

Chemical control of protein secretion using a small molecule approach provides a powerful tool to optimize tissue engineering strategies by regulating the spatial and temporal dimensions that are exposed to a specific protein. We placed fibroblast growth factor 2 (FGF-2) under conditional control of a small molecule and demonstrated greater than 50-fold regulation of FGF-2 release as well as tunability, reversibility, and functionality in vitro. We then applied conditional control of FGF-2 secretion to a cell-based, skeletal tissue engineering construct consisting of adipose stem cells (ASCs) on a biomimetic scaffold to promote bone formation in a murine critical-sized calvarial defect model. ASCs are an easily harvested and abundant source of postnatal multipotent cells and have previously been demonstrated to regenerate bone in critical-sized defects. These results suggest that chemically controlled FGF-2 secretion can significantly increase bone formation by ASCs in vivo. This study represents a novel approach toward refining protein delivery for tissue engineering applications.


Assuntos
Adipócitos , Fator 2 de Crescimento de Fibroblastos/biossíntese , Consolidação da Fratura , Fraturas Cranianas/terapia , Crânio/lesões , Transplante de Células-Tronco , Células-Tronco/metabolismo , Adipócitos/metabolismo , Adipócitos/transplante , Animais , Fator 2 de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Nus , Engenharia Tecidual , Alicerces Teciduais , Transplante Homólogo
18.
Cancer Immunol Res ; 10(9): 1084-1094, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35862229

RESUMO

ABSTRACT: Immune checkpoint inhibitors (ICI) have been effective in treating a subset of refractory solid tumors, but only a small percentage of treated patients benefit from these therapies. Thus, there is a clinical need for reliable tools that allow for the early assessment of response to ICIs, as well as a preclinical need for imaging tools that aid in the future development and understanding of immunotherapies. Here we demonstrate that CD69, a canonical early-activation marker expressed on a variety of activated immune cells, including cytotoxic T cells and natural killer (NK) cells, is a promising biomarker for the early assessment of response to immunotherapies. We have developed a PET probe by radiolabeling a highly specific CD69 mAb, H1.2F3, with Zirconium-89 (89Zr), [89Zr]-deferoxamine (DFO)-H1.2F3. [89Zr]-DFO-H1.2F3 detected changes in CD69 expression on primary mouse T cells in vitro and detected activated immune cells in a syngeneic tumor immunotherapy model. In vitro uptake studies with [89Zr]-DFO-H1.2F3 showed a 15-fold increase in CD69 expression for activated primary mouse T cells, relative to untreated resting T cells. In vivo PET imaging showed that tumors of ICI-responsive mice had greater uptake than the tumors of nonresponsive and untreated mice. Ex vivo biodistribution, autoradiography, and IHC analyses supported the PET imaging findings. These data suggest that the CD69 PET imaging approach detects CD69 expression with sufficient sensitivity to quantify immune cell activation in a syngeneic mouse immunotherapy model and could allow for the prediction of therapeutic immune responses to novel immunotherapies.


Assuntos
Radioisótopos , Zircônio , Animais , Linhagem Celular Tumoral , Desferroxamina/farmacologia , Fatores Imunológicos , Imunoterapia , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
19.
Clin Cancer Res ; 28(24): 5330-5342, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972732

RESUMO

PURPOSE: Despite the success of chimeric antigen receptor (CAR) T-cell therapy against hematologic malignancies, successful targeting of solid tumors with CAR T cells has been limited by a lack of durable responses and reports of toxicities. Our understanding of the limited therapeutic efficacy in solid tumors could be improved with quantitative tools that allow characterization of CAR T-targeted antigens in tumors and accurate monitoring of response. EXPERIMENTAL DESIGN: We used a radiolabeled FAP inhibitor (FAPI) [18F]AlF-FAPI-74 probe to complement ongoing efforts to develop and optimize FAP CAR T cells. The selectivity of the radiotracer for FAP was characterized in vitro, and its ability to monitor changes in FAP expression was evaluated using rodent models of lung cancer. RESULTS: [18F]AlF-FAPI-74 showed selective retention in FAP+ cells in vitro, with effective blocking of the uptake in presence of unlabeled FAPI. In vivo, [18F]AlF-FAPI-74 was able to detect FAP expression on tumor cells as well as FAP+ stromal cells in the tumor microenvironment with a high target-to-background ratio. We further demonstrated the utility of the tracer to monitor changes in FAP expression following FAP CAR T-cell therapy, and the PET imaging findings showed a robust correlation with ex vivo analyses. CONCLUSIONS: This noninvasive imaging approach to interrogate the tumor microenvironment represents an innovative pairing of a diagnostic PET probe with solid tumor CAR T-cell therapy and has the potential to serve as a predictive and pharmacodynamic response biomarker for FAP as well as other stroma-targeted therapies. A PET imaging approach targeting FAP expressed on activated fibroblasts of the tumor stroma has the potential to predict and monitor therapeutic response to FAP-targeted CAR T-cell therapy. See related commentary by Weber et al., p. 5241.


Assuntos
Gelatinases , Serina Endopeptidases , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons , Linfócitos T , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio
20.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106638

RESUMO

BACKGROUNDSeveral molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test.METHODSUsing a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool.RESULTSWe observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be "imageable." Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions.CONCLUSIONThis work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy.TRIAL REGISTRATIONClinicalTrials.gov NCT03424525.FUNDINGInstitute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).


Assuntos
Infecções Bacterianas , Trimetoprima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/diagnóstico por imagem , Infecções Bacterianas/tratamento farmacológico , Radioisótopos de Carbono , Escherichia coli , Humanos , Trimetoprima/farmacologia , Trimetoprima/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa