Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(12): 6087-6098, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733391

RESUMO

One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Quebras de DNA , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Linhagem Celular , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Transdução de Sinais
2.
Biophys J ; 113(7): 1383-1394, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978433

RESUMO

Genome dynamics are intimately linked to the regulation of gene expression, the most fundamental mechanism in biology, yet we still do not know whether the very process of transcription drives spatial organization at specific gene loci. Here, we have optimized the ANCHOR/ParB DNA-labeling system for real-time imaging of a single-copy, estrogen-inducible transgene in human cells. Motion of an ANCHOR3-tagged DNA locus was recorded in the same cell before and during the appearance of nascent MS2-labeled mRNA. We found that transcription initiation by RNA polymerase 2 resulted in confinement of the mRNA-producing gene domain within minutes. Transcription-induced confinement occurred in each single cell independently of initial, highly heterogeneous mobility. Constrained mobility was maintained even when inhibiting polymerase elongation. Chromatin motion at constant step size within a largely confined area hence leads to increased collisions that are compatible with the formation of gene-specific chromatin domains, and reflect the assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription.


Assuntos
Ciclina D1/biossíntese , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/metabolismo , Ciclina D1/genética , Recuperação de Fluorescência Após Fotodegradação , Loci Gênicos , Humanos , Microscopia de Fluorescência , Imagem Molecular , Movimento (Física) , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Espectrometria de Fluorescência , Transfecção , Transgenes
3.
Mol Biol Cell ; 27(24): 3791-3799, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733626

RESUMO

Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo.


Assuntos
DNA Helicases/metabolismo , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Poli Adenosina Difosfato Ribose/metabolismo , Técnicas de Cultura de Células , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , DNA , Dano ao DNA , Reparo do DNA/fisiologia , Histonas/metabolismo , Humanos , Nucleossomos , Imagem Óptica , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa