Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4528-4536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573311

RESUMO

Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.

2.
Photosynth Res ; 143(2): 205-220, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31643017

RESUMO

The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos da radiação
3.
Angew Chem Int Ed Engl ; 59(31): 12976-12983, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32337812

RESUMO

Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light-matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ-Glu-Cys and Cys-Gly and analyzed crystallographically. The γ-Glu-Cys-directed NPs present a cube-like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys-Gly exhibited a rhombic dodecahedron-like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ-Glu-Cys generated an intermediate concave hexoctahedron morphology, while Cys-Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys-Gly are named 432 helicoid V because of their unique morphology and growth pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa