Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Genomics ; 24(1): 185, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024819

RESUMO

BACKGROUND: Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS: The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION: A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.


Assuntos
Oryza , Transcriptoma , Plântula , Resposta ao Choque Frio/genética , Anaerobiose , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
2.
BMC Genomics ; 23(1): 390, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606708

RESUMO

BACKGROUND: Grain yield is a complex trait that results from interaction between underlying phenotypic traits and climatic, edaphic, and biotic variables. In rice, main culm panicle node number (MCPNN; the node number on which the panicle is borne) and maximum node production rate (MNPR; the number of leaves that emerge per degree-day > 10°C) are primary phenotypic plant traits that have significant positive direct effects on yield-related traits. Degree-days to heading (DDTH), which has a significant positive effect on grain yield, is influenced by the interaction between MCPNN and MNPR. The objective of this research is to assess the phenotypic variation of MCPNN, MNPR, and DDTH in a panel of diverse rice accessions, determine regions in the rice genome associated with these traits using genome-wide association studies (GWAS), and identify putative candidate genes that control these traits. RESULTS: Considerable variation was observed for the three traits in a 220-genotype diverse rice population. MCPNN ranged from 8.1 to 20.9 nodes in 2018 and from 9.9 to 21.0 nodes in 2019. MNPR ranged from 0.0097 to 0.0214 nodes/degree day > 10°C in 2018 and from 0.0108 to 0.0193 nodes/degree-day > 10°C in 2019. DDTH ranged from 713 to 2,345 degree-days > 10°C in 2018 and from 778 to 2,404 degree-days > 10°C in 2019. Thirteen significant (P < 2.91 x 10-7) trait-single nucleotide polymorphism (SNP) associations were identified using the multilocus mixed linear model for GWAS. Significant associations between MCPNN and three SNPs in chromosome 2 (S02_12032235, S02_11971745, and S02_12030176) were detected with both the 2018 and best linear unbiased prediction (BLUP) datasets. Nine SNPs in chromosome 6 (S06_1970442, S06_2310856, S06_2550351, S06_1968653, S06_2296852, S06_1968680, S06_1968681, S06_1970597, and S06_1970602) were significantly associated with MNPR in the 2019 dataset. One SNP in chromosome 11 (S11_29358169) was significantly associated with the DDTH in the BLUP dataset. CONCLUSIONS: This study identifies SNP markers that are putatively associated with MCPNN, MNPR, and DDTH. Some of these SNPs were located within or near gene models, which identify possible candidate genes involved in these traits. Validation of the putative candidate genes through expression and gene editing analyses are necessary to confirm their roles in regulating MCPNN, MNPR, and DDTH. Identifying the underlying genetic basis for primary phenotypic traits MCPNN and MNPR could lead to the development of fast and efficient approaches for their estimation, such as marker-assisted selection and gene editing, which is essential in increasing breeding efficiency and enhancing grain yield in rice. On the other hand, DDTH is a resultant variable that is highly affected by nitrogen and water management, plant density, and several other factors.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Variação Biológica da População , Grão Comestível/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
3.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456898

RESUMO

CRISPR-Cas gene editing technologies offer the potential to modify crops precisely; however, in vitro plant transformation and regeneration techniques present a bottleneck due to the lengthy and genotype-specific tissue culture process. Ideally, in planta transformation can bypass tissue culture and directly lead to transformed plants, but efficient in planta delivery and transformation remains a challenge. This study investigates transformation methods that have the potential to directly alter germline cells, eliminating the challenge of in vitro plant regeneration. Recent studies have demonstrated that carbon nanotubes (CNTs) loaded with plasmid DNA can diffuse through plant cell walls, facilitating transient expression of foreign genetic elements in plant tissues. To test if this approach is a viable technique for in planta transformation, CNT-mediated plasmid DNA delivery into rice tissues was performed using leaf and excised-embryo infiltration with reporter genes. Quantitative and qualitative data indicate that CNTs facilitate plasmid DNA delivery in rice leaf and embryo tissues, resulting in transient GFP, YFP, and GUS expression. Experiments were also initiated with CRISPR-Cas vectors targeting the phytoene desaturase (PDS) gene for CNT delivery into mature embryos to create heritable genetic edits. Overall, the results suggest that CNT-based delivery of plasmid DNA appears promising for in planta transformation, and further optimization can enable high-throughput gene editing to accelerate functional genomics and crop improvement activities.


Assuntos
Nanotubos de Carbono , Oryza , Sistemas CRISPR-Cas/genética , DNA , Edição de Genes/métodos , Genoma de Planta , Oryza/genética , Folhas de Planta/genética , Plantas/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Sementes/genética
4.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743007

RESUMO

Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Alelos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta , Melhoramento Vegetal/métodos
5.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077206

RESUMO

Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.


Assuntos
Cicer , Oryza , Vigna , Arachis/genética , Sistemas CRISPR-Cas/genética , Cicer/genética , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta , Humanos , Oryza/genética , Melhoramento Vegetal , Protoplastos , RNA Guia de Cinetoplastídeos/genética , Vigna/genética
6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232678

RESUMO

Salinity stress is a major constraint to rice production in many coastal regions due to saline groundwater and river sources, especially during the dry season in coastal areas when seawater intrudes further inland due to reduced river flows. Since salinity tolerance is a complex trait, breeding efforts can be assisted by mapping quantitative trait loci (QTLs) for complementary salt tolerance mechanisms, which can then be combined to provide higher levels of tolerance. While an abundance of seedling stage salinity tolerance QTLs have been mapped, few studies have investigated reproductive stage tolerance in rice due to the difficulty of achieving reliable stage-specific phenotyping techniques. In the current study, a BC1F2 mapping population consisting of 435 individuals derived from a cross between a salt-tolerant Saudi Arabian variety, Hasawi, and a salt-sensitive Bangladeshi variety, BRRI dhan28, was evaluated for yield components after exposure to EC 10 dS/m salinity stress during the reproductive stage. After selecting tolerant and sensitive progeny, 190 individuals were genotyped by skim sequencing, resulting in 6209 high quality single nucleotide polymorphic (SNP) markers. Subsequently, a total of 40 QTLs were identified, of which 24 were for key traits, including productive tillers, number and percent filled spikelets, and grain yield under stress. Importantly, three yield-related QTLs, one each for productive tillers (qPT3.1), number of filled spikelets (qNFS3.1) and grain yield (qGY3.1) under salinity stress, were mapped at the same position (6.7 Mb or 26.1 cM) on chromosome 3, which had not previously been associated with grain yield under salinity stress. These QTLs can be investigated further to dissect the molecular mechanisms underlying reproductive stage salinity tolerance in rice.


Assuntos
Oryza , Melhoramento Vegetal , Locos de Características Quantitativas , Tolerância ao Sal , Mapeamento Cromossômico , Nucleotídeos , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Salinidade , Tolerância ao Sal/genética
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055026

RESUMO

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR-Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR-Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut.


Assuntos
Albuminas 2S de Plantas/genética , Antígenos de Plantas/genética , Arachis/genética , Edição de Genes , Protoplastos , Arachis/imunologia , Sistemas CRISPR-Cas , Marcação de Genes , Vetores Genéticos/genética , Projetos Piloto , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , Plântula , Temperatura , Transfecção/métodos
8.
Theor Appl Genet ; 134(8): 2587-2601, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950284

RESUMO

KEY MESSAGE: Novel mutations of OsCOP1 were identified to be responsible for yellowish pericarp and embryo lethal phenotype, which revealed that OsCOP1 plays a crucial role in flavonoid biosynthesis and embryogenesis in rice seed. Successful production of viable seeds is a major component of plant life cycles, and seed development is a complex, highly regulated process that affects characteristics such as seed viability and color. In this study, three yellowish-pericarp embryo lethal (yel) mutants, yel-hc, yel-sk, and yel-cc, were produced from three different japonica cultivars of rice (Oryza sativa L). Mutant seeds had yellowish pericarps and exhibited embryonic lethality, with significantly reduced grain size and weight. Morphological aberrations were apparent by 5 days after pollination, with abnormal embryo development and increased flavonoid accumulation observed in the yel mutants. Genetic analysis and mapping revealed that the phenotype of the three yel mutants was controlled by a single recessive gene, LOC_Os02g53140, an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). The yel-hc, yel-sk, and yel-cc mutants carried mutations in the RING finger, coiled-coil, and WD40 repeat domains, respectively, of OsCOP1. CRISPR/Cas9-targeted mutagenesis was used to knock out OsCOP1 by targeting its functional domains, and transgenic seed displayed the yel mutant phenotype. Overexpression of OsCOP1 in a homozygous yel-hc mutant background restored pericarp color, and the aberrant flavonoid accumulation observed in yel-hc mutant was significantly reduced in the embryo and endosperm. These results demonstrate that OsCOP1 is associated with embryo development and flavonoid biosynthesis in rice grains. This study will facilitate a better understanding of the functional roles of OsCOP1 involved in early embryogenesis and flavonoid biosynthesis in rice seeds.


Assuntos
Endosperma/crescimento & desenvolvimento , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Endosperma/genética , Endosperma/metabolismo , Oryza/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética
9.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209672

RESUMO

Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery and calli regeneration, which can be hampered by genotype-dependent requirements for plant regeneration. Here, methods for Agrobacterium-mediated and biolistic transformation and regeneration of indica rice were optimized using CRISPR-Cas9 gene-editing of the submergence tolerance regulator SUBMERGENCE 1A-1 gene of the cultivar Ciherang-Sub1. Callus induction and plantlet regeneration methods were optimized for embryogenic calli derived from immature embryos and mature seed-derived calli. Optimized regeneration (95%) and maximal editing efficiency (100%) were obtained from the immature embryo-derived calli. Phenotyping of T1 seeds derived from the edited T0 plants under submergence stress demonstrated inferior phenotype compared to their controls, which phenotypically validates the disruption of SUB1A-1 function. The methods pave the way for rapid CRISPR-Cas9 gene editing of recalcitrant indica rice cultivars.


Assuntos
Genes de Plantas , Oryza/fisiologia , Regeneração , Transformação Genética , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/genética , Edição de Genes , Fenótipo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Sementes/genética , Sementes/crescimento & desenvolvimento
10.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681568

RESUMO

Bottlenecks in plant transformation and regeneration have slowed progress in applying CRISPR/Cas-based genome editing for crop improvement. Rice (Oryza sativa L.) has highly efficient temperate japonica transformation protocols, along with reasonably efficient indica protocols using immature embryos. However, rapid and efficient protocols are not available for transformation and regeneration in tropical japonica varieties, even though they represent the majority of rice production in the U.S. and South America. The current study has optimized a protocol using callus induction from mature seeds with both Agrobacterium-mediated and biolistic transformation of the high-yielding U.S. tropical japonica cultivar Presidio. Gene editing efficiency was tested by evaluating knockout mutations in the phytoene desaturase (PDS) and young seedling albino (YSA) genes, which provide a visible phenotype at the seedling stage for successful knockouts. Using the optimized protocol, transformation of 648 explants with particle bombardment and 532 explants with Agrobacterium led to a 33% regeneration efficiency. The YSA targets had ambiguous phenotypes, but 60% of regenerated plants for PDS showed an albino phenotype. Sanger sequencing of edited progeny showed a number of insertions, deletions, and substitutions at the gRNA target sites. These results pave the way for more efficient gene editing of tropical japonica rice varieties.


Assuntos
Agrobacterium/fisiologia , Edição de Genes/métodos , Oryza/genética , Oxirredutases/genética , Biolística , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Análise de Sequência de DNA , Transformação Genética
11.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923150

RESUMO

Tolerance of anaerobic germination (AG) is a key trait in the development of direct seeded rice. Through rapid and sustained coleoptile elongation, AG tolerance enables robust seedling establishment under flooded conditions. Previous attempts to fine map and characterize AG2 (qAG7.1), a major centromere-spanning AG tolerance QTL, derived from the indica variety Ma-Zhan Red, have failed. Here, a novel approach of "enriched haplotype" genome-wide association study based on the Ma-Zhan Red haplotype in the AG2 region was successfully used to narrow down AG2 from more than 7 Mb to less than 0.7 Mb. The AG2 peak region contained 27 genes, including the Rc gene, responsible for red pericarp development in pigmented rice. Through comparative variant and transcriptome analysis between AG tolerant donors and susceptible accessions several candidate genes potentially controlling AG2 were identified, among them several regulatory genes. Genome-wide comparative transcriptome analysis suggested differential regulation of sugar metabolism, particularly trehalose metabolism, as well as differential regulation of cell wall modification and chloroplast development to be implicated in AG tolerance mechanisms.


Assuntos
Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Germinação , Oryza/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Anaerobiose , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética
12.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073711

RESUMO

Digital farming is a modern agricultural concept that aims to maximize the crop yield while simultaneously minimizing the environmental impact of farming. Successful implementation of digital farming requires development of sensors to detect and identify diseases and abiotic stresses in plants, as well as to probe the nutrient content of seeds and identify plant varieties. Experimental evidence of the suitability of Raman spectroscopy (RS) for confirmatory diagnostics of plant diseases was previously provided by our team and other research groups. In this study, we investigate the potential use of RS as a label-free, non-invasive and non-destructive analytical technique for the fast and accurate identification of nutrient components in the grains from 15 different rice genotypes. We demonstrate that spectroscopic analysis of intact rice seeds provides the accurate rice variety identification in ~86% of samples. These results suggest that RS can be used for fully automated, fast and accurate identification of seeds nutrient components.


Assuntos
Grão Comestível/química , Nutrientes/química , Agricultura , Análise Espectral/métodos
13.
BMC Genet ; 21(1): 6, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952473

RESUMO

BACKGROUND: Anaerobic germination is one of the most important traits for rice under direct-seeded conditions. The trait reduces risk of crop failure due to waterlogged conditions after seeding and allows water to be used as a means of weed control. The identification of QTLs and causal genes for anaerobic germination will facilitate breeding for improved direct-seeded rice varieties. In this study, we explored a BC1F2:3 population developed from a cross between BJ1, an indica landrace, and NSIC Rc222, a high-yielding recurrent parent. The population was phenotyped under different screening methods (anaerobic screenhouse, anaerobic tray, and aerobic screenhouse) to establish the relationship among the methods and to identify the most suitable screening method, followed by bulk segregant analysis (BSA) to identify large-effect QTLs. RESULTS: The study showed high heritability for survival (SUR) under all three phenotyping conditions. Although high correlation was observed within screening environments between survival at 14 and 21 days after seeding, the correlation across environments was low. Germination under aerobic and anaerobic conditions showed very low correlation, indicating the independence of their genetic control. The results were further confirmed through AMMI analysis. Four significant markers with an effect on anaerobic germination were identified through BSA. CIM analysis revealed qAG1-2, qAG6-2, qAG7-4, and qAG10-1 having significant effects on the trait. qAG6-2 and qAG10-1 were consistent across screening conditions and seedling age while qAG1-2 and qAG7-4 were specific to screening methods. All QTLs showed an effect when survival across all screening methods was analyzed. Together, the QTLs explained 39 to 55% of the phenotypic variation for survival under anaerobic conditions. No QTL effects were observed under aerobic conditions. CONCLUSIONS: The study helped us understand the effect of phenotyping method on anaerobic germination, which will lead to better phenotyping for this trait in future studies. The QTLs identified through this study will allow the improvement of breeding lines for the trait through marker-assisted selection or through forward breeding approaches such as genomic selection. The high frequency of the BJ1 allele of these QTLs will enhance the robustness of germination under anaerobic conditions in inbred and hybrid rice varieties.


Assuntos
Anaerobiose/genética , Mapeamento Cromossômico , Germinação/genética , Oryza/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Variação Biológica da População , Interação Gene-Ambiente , Oryza/metabolismo , Fenótipo
14.
Ann Bot ; 124(7): 1199-1210, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31306479

RESUMO

BACKGROUND AND AIMS: Rice ecosystems in the tropical coastal areas are subject to two types of flooding stress: transient complete submergence and long-term water stagnation (stagnant flooding). Here, we aimed to dissect the mechanisms for stagnant flooding tolerance of rice genotypes carrying SUB1, a quantitative trait locus for submergence tolerance. METHODS: We screened 80 elite genotypes under stagnant flooding stress in the lowland rice fields in the wet and dry seasons, and examined the tolerance mechanisms of promising genotypes for the two following seasons. KEY RESULTS: Yield reduction under stagnant flooding averaged 48 % in the dry season and 89 % in the wet season. Elite genotypes carrying SUB1 showed 49 % lower yield than those without SUB1 under stagnant flooding, with no differences under shallow water conditions. However, we identified a few high-yielding Sub1 genotypes that were as tolerant of stagnant flooding as a reference genotype that lacked SUB1. These genotypes had intermediate stature with more shoot elongation in response to rising water than a moderately tolerant Sub1 reference variety, resulting in greater canopy expansion and higher yield. It was important to increase lodging resistance, since plant height >140 cm increased lodging under stagnant flooding. The culm diameter was closely associated with culm strength; reduced aerenchyma formation and increased lignin accumulation in the culm should increase lodging resistance. CONCLUSIONS: The study demonstrated a successful combination of submergence and stagnant flooding tolerance in a rice breeding programme, and identified elite Sub1 genotypes that also tolerate stagnant flooding. Our results will support genetic improvement of Sub1 varieties for stagnant flooding tolerance.


Assuntos
Oryza , Ecossistema , Inundações , Genes de Plantas , Locos de Características Quantitativas
15.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142722

RESUMO

The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , RNA-Seq/métodos , Estresse Fisiológico , Transcriptoma , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
16.
Plant Cell ; 28(10): 2365-2384, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27655842

RESUMO

Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura , Fatores de Transcrição/metabolismo
17.
Breed Sci ; 69(2): 227-233, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481831

RESUMO

Direct seeding of rice often results in poor crop establishment due to unlevelled fields, unpredicted heavy rains after sowing, and weed and pest invasion. Thus, it is important to develop varieties able to tolerate flooding during germination, also known as anaerobic germination (AG), to address these constraints. A study was conducted to identify QTLs associated with AG tolerance from an IR64/Kharsu 80A F2:3 mapping population using 190 lines phenotyped for seedling survival under the stress. Genotyping was performed using a genomewide 384-plex Indica/Indica SNP set. Four QTLs derived from Kharsu 80A providing increased tolerance to anaerobic germination were identified: three on chromosome 7 (qAG7.1, qAG7.2 and qAG7.3) and one on chromosome 3 (qAG3), with LOD values ranging from 5.7 to 7.7, and phenotypic variance explained (R2) from 8.1% to 12.6%. The QTLs identified in this study can be further investigated to better understand the genetic bases of AG tolerance in rice, and used for marker-assisted selection to develop more robust direct-seeded rice varieties.

18.
Plant Cell Physiol ; 58(2): 185-197, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069894

RESUMO

Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement.


Assuntos
Inundações , Oryza/genética , Oryza/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Cruzamento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 15: 1371748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590750

RESUMO

Rice (Oryza sativa) is the primary crop for nearly half of the world's population. Groundwater in many rice-growing parts of the world often has elevated levels of arsenite and arsenate. At the same time, rice can accumulate up to 20 times more arsenic compared to other staple crops. This places an enormous amount of people at risk of chronic arsenic poisoning. In this study, we investigated whether Raman spectroscopy (RS) could be used to diagnose arsenic toxicity in rice based on biochemical changes that were induced by arsenic accumulation. We modeled arsenite and arsenate stresses in four different rice cultivars grown in hydroponics over a nine-day window. Our results demonstrate that Raman spectra acquired from rice leaves, coupled with partial least squares-discriminant analysis, enabled accurate detection and identification of arsenic stress with approximately 89% accuracy. We also performed high-performance liquid chromatography (HPLC)-analysis of rice leaves to identify the key molecular analytes sensed by RS in confirming arsenic poisoning. We found that RS primarily detected a decrease in the concentration of lutein and an increase in the concentration of vanillic and ferulic acids due to the accumulation of arsenite and arsenate in rice. This showed that these molecules are detectable indicators of biochemical response to arsenic accumulation. Finally, a cross-correlation of RS with HPLC and ICP-MS demonstrated RS's potential for a label-free, non-invasive, and non-destructive quantification of arsenic accumulation in rice.

20.
Theor Appl Genet ; 126(5): 1357-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417074

RESUMO

Wide adoption of direct-seeded rice practices has been hindered by poorly leveled fields, heavy rainfall and poor drainage, which cause accumulation of water in the fields shortly after sowing, leading to poor crop establishment. This is due to the inability of most rice varieties to germinate and reach the water surface under complete submergence. Hence, tolerance of anaerobic conditions during germination is an essential trait for direct-seeded rice cultivation in both rainfed and irrigated ecosystems. A QTL study was conducted to unravel the genetic basis of tolerance of anaerobic conditions during germination using a population derived from a cross between IR42, a susceptible variety, and Ma-Zhan Red, a tolerant landrace from China. Phenotypic data was collected based on the survival rates of the seedlings at 21 days after sowing of dry seeds under 10 cm of water. QTL analysis of the mapping population consisting of 175 F2:3 families genotyped with 118 SSR markers identified six significant QTLs on chromosomes 2, 5, 6, and 7, and in all cases the tolerant alleles were contributed by Ma-Zhan Red. The largest QTL on chromosome 7, having a LOD score of 14.5 and an R (2) of 31.7 %, was confirmed using a BC2F3 population. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to rapidly develop varieties with improved tolerance to anaerobic condition during germination. Ultimately, this trait can be combined with other abiotic stress tolerance QTLs to provide resilient varieties for direct-seeded systems.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Oryza/genética , Locos de Características Quantitativas , Anaerobiose , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas/genética , Ligação Genética , Germinação/genética , Escore Lod , Oryza/crescimento & desenvolvimento , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa