Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Water Sci Technol ; 74(8): 1964-1970, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27789897

RESUMO

The ammonium removal rate of the microalga Scenedesmus sp. was studied under outdoor conditions. Microalgae were grown in a 500 L flat-plate photobioreactor and fed with the effluent of a submerged anaerobic membrane bioreactor. Temperature ranged between 9.5 °C and 32.5 °C and maximum light intensity was 1,860 µmol·m-2·s-1. A maximum specific ammonium removal rate of 3.71 mg NH4+-N·g TSS-1·h-1 was measured (at 22.6 °C and with a light intensity of 1,734 µmol·m-2·s-1). A mathematical model considering the influence of ammonium concentration, light and temperature was validated. The model successfully reproduced the observed values of ammonium removal rate obtained and it is thus presented as a useful tool for plant operation.


Assuntos
Compostos de Amônio/metabolismo , Scenedesmus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Luz , Microalgas/metabolismo , Modelos Teóricos , Fotobiorreatores , Temperatura
2.
Water Environ Res ; 87(4): 369-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26462081

RESUMO

This paper deals with the effect of a bioaugmentation batch enhanced (BABE) reactor implementation in a biological nutrient removal pilot plant on the populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The results of fluorescence in situ hybridization (FISH) technique showed that AOB and NOB populations were significantly enhanced, from 4 to 8% and from 2 to 9%, respectively, as a result of the BABE reactor implementation. Regarding AOB, the percentage of Nitrosomonas oligotropha was mainly increased (3 to 6%). Regarding NOB, Nitrospirae spp was greatly enhanced (1 to 7%). Both species are considered K-strategist (high affinity to the substrate, low maximum growth rates) and they usually predominate in reactors with low ammonium and nitrite concentrations, respectively.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitritos/metabolismo , Esgotos/química , Gerenciamento de Resíduos/instrumentação , Aerobiose , Amônia/isolamento & purificação , Nitritos/isolamento & purificação , Oxirredução , Projetos Piloto
3.
Environ Technol ; : 1-12, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37409450

RESUMO

Human urine has a high chemical oxygen demand (COD) content which makes anaerobic treatments potentially appropriate for the management of yellow waters, allowing for energy recovery. However, its high N content makes this treatment challenging. The present work studied the viability of performing an anaerobic digestion process for COD valorization on a real (not synthetic) urine stream at laboratory scale. To deal with nitrogen inhibition, two different ammonia extraction systems were proposed and tested. With them, a proper evolution of acidogenesis and methanogenesis was observed. Nitrogen was recovered in the form of ammonium sulphate, which could be used for agriculture, in two different ways: ammonia extraction from the urine stream before feeding the reactor and in situ extraction in the reactor. The first method, which proved to be a better strategy consisted in a desorption process (NaOH addition, air bubbling and acid (H2SO4) absorption column, HCl for final pH adjustment) whereas the in situ extraction in the reactor consisted of an acid (H2SO4) absorption column installed in the biogas recycling line of both reactors. Stable methane production over 220 mL/g COD was achieved and methane content in the biogas was stable around 71%.

4.
Water Res ; 215: 118249, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290870

RESUMO

A semi-industrial scale AnMBR plant was operated for more than 600 days to evaluate the long-term operation of this technology at ambient temperature (ranging from 10 to 27 ○C), variable hydraulic retention times (HRT) (from 25 to 41 h) and influent loads (mostly between 15 and 45 kg COD·d-1). The plant was fed with sulfate-rich high-loaded municipal wastewater from the pre-treatment of a full-scale WWTP. The results showed promising AnMBR performance as the core technology for wastewater treatment, obtaining an average 87.2 ± 6.1 % COD removal during long-term operation, with 40 % of the data over 90%. Five periods were considered to evaluate the effect of HRT, influent characteristics, COD/SO42--S ratio and temperature on the biological process. In the selected periods, methane yields varied from 70.2±36.0 to 169.0±95.1 STP L CH4·kg-1 CODinf, depending on the influent sulfate concentration, and wasting sludge production was reduced by between 8 % and 42 % compared to conventional activated sludge systems. The effluent exhibited a significant nutrient recovery potential. Temperature, HRT, SRT and influent COD/SO42--S ratio were corroborated as crucial parameters to consider in maximizing AnMBR performance.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Reatores Biológicos , Esgotos , Temperatura , Eliminação de Resíduos Líquidos/métodos
5.
Sci Total Environ ; 797: 149165, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311355

RESUMO

A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphorus source for growth. Calibration and validation were performed with experimental data from a pilot-scale membrane photobioreactor (MPBR) fed with the permeate obtained from an anaerobic membrane bioreactor (AnMBR) pilot plant fed with real urban wastewater. 12 of the model parameters were calibrated. Despite the dynamics involved in the operating and environmental conditions, the model was able to reproduce the overall process performance with a single set of model parameters values. Four periods of different environmental and operational conditions were accurately simulated. Regarding the former, light and temperature ranged 10-406 µmol·m-2·s-1 and 19.7-32.1 °C, respectively. Concerning the later, the photobioreactors widths were 0.25 and 0.10 m, and the biomass and hydraulic retention times ranged 3-4.5 and 1.5-2.5 days, respectively. The validation of the model resulted in an overall correlation coefficient (R2) of 0.9954. The simulation results showed the potential of the model to predict the dynamics of the different components: the relative proportions of microalgae, nitrogen and phosphorus removal, polyphosphate storage and consumption, and soluble organic matter concentration, as well as the influence of environmental parameters on the microalgae's biokinetic processes. The proposed model could provide an effective tool for the industry to predict microalgae production and comply with the discharge limits in areas declared sensitive to eutrophication.


Assuntos
Microalgas , Biomassa , Nitrogênio/análise , Fósforo , Fotobiorreatores , Esgotos , Águas Residuárias
6.
Water Res ; 184: 116133, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721762

RESUMO

Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and control purposes. This paper therefore proposes an AnMBR anaerobic digestion model to simulate the crucial SRB-related process since these bacteria degrade more than 40% of the organic matter. The proposed model, which is included in the BNRM2 collection model, has a reduced but all-inclusive structure, including hydrolysis, acidogenesis, acetogenesis, methanogenesis and other SRB-related processes. It was calibrated and validated using data from an AnMBR pilot plant treating sulfate-rich UWW, including parameter values obtained in off-line experiments and optimization methods. Despite the complex operating dynamics and influent composition, it was able to reproduce the process performance. In fact, it was able to simulate the AD of sulfate-rich UWW considering only two groups of SRB: heterotrophic SRB growing on both VFA (propionate) and acetate, and autotrophic SRB growing on hydrogen. Besides the above-mentioned constraints, the model reproduced the dynamics of the mixed liquor solids concentration, which helped to integrate biochemical and filtration models. It also reproduced the alkalinity and pH dynamics in the mixed liquor required for assessing the effect of chemical precipitation on membrane scaling.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Sulfatos , Águas Residuárias/análise
7.
Bioresour Technol ; 314: 123763, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32645574

RESUMO

Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 °C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pre-treatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated at gross transmembrane fluxes above 20 LMH maintaining low membrane fouling propensities for more than 250 days without chemical cleaning requirements. Thus, the system resulted in net positive energy productions and GHG emissions around zero. The results obtained confirm the feasibility of UWW treatment in AnMBR under mild and warm climates.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Metano
8.
Bioresour Technol ; 300: 122673, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31948770

RESUMO

Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environmental innovation perspectives. The potentials and limitations of different technologies are discussed, covering systems based on membranes, photosynthesis, crystallization and other physical and biological nutrient recovery systems (e.g. incineration, composting, stripping and absorption and enhanced biological phosphorus recovery).


Assuntos
Fósforo , Águas Residuárias , Nitrogênio , Reciclagem , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa