Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Glob Chang Biol ; 27(17): 4139-4153, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021965

RESUMO

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.


Assuntos
Ecossistema , Solo , Florestas , Árvores , Urbanização
2.
Ecotoxicol Environ Saf ; 189: 110036, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31825795

RESUMO

Self-contamination should not be underestimated when quantifying microplastics (MPs) in environmental matrices. Standardised and validated methodologies for MP sampling, extraction, and analysis are lacking. The various applications of plastics in our society have made them ubiquitous, even in clothing, rendering MP self-contamination inevitable. In the present study, we sampled lake sediment, snow, and ice, purposefully wearing red overalls composed of cotton; fibres from which we could quantify using Fourier-Transform Infrared Spectroscopy (FTIR), serving as an indication of possible self-contamination from clothes. The suitability of cotton as a representation of MP contamination was also evaluated. For all detected fibres, 25 ± 1%, 20 ± 7%, and 8 ± 6% for snow, ice, and sediment, respectively, originated from sampling attire. These findings demonstrate that self-contamination can play a significant role when quantifying MP pollution, highlighting that sampling conducted to date might have overestimated the presence of MP or even contaminated MP-free samples.


Assuntos
Vestuário , Monitoramento Ambiental/normas , Microplásticos/análise , Poluentes Químicos da Água/análise , Fibra de Algodão/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Gelo/análise , Lagos/química , Neve/química
3.
Environ Microbiol ; 19(3): 1281-1295, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063185

RESUMO

Soil microbes play a key role in controlling ecosystem functions and providing ecosystem services. Yet, microbial communities in urban green space soils remain poorly characterized. Here we compared soil microbial communities in 41 urban parks of (i) divergent plant functional types (evergreen trees, deciduous trees and lawn) and (ii) different ages (constructed 10, ∼50 and >100 years ago). These microbial communities were also compared to those in 5 control forests in southern Finland. Our results indicate that, despite frequent disturbances in urban parks, urban soil microbes still followed the classic patterns typical of plant-microbe associations in natural environments: both bacterial and fungal communities in urban parks responded to plant functional groups, but fungi were under tighter control of plants than bacteria. We show that park age shaped the composition of microbial communities, possibly because vegetation in old parks have had a longer time to modify soil properties and microbial communities than in young parks. Furthermore, control forests harboured distinct but less diverse soil microbial communities than urban parks that are under continuous anthropogenic disturbance. Our results highlight the importance of maintaining a diverse portfolio of urban green spaces and plant communities therein to facilitate complex microbial communities and functions in urban systems.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Cidades , Clima , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Parques Recreativos , Plantas/microbiologia , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
4.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970220

RESUMO

Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity.IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities, including ECM and saprotrophic fungi, in urban parks are affected by plant functional type and park age. However, ECM fungal diversity and its responses to urban stress, plant functional type, or park age remain unknown. The significance of our study is in identifying, in greater detail, the responses of ECM fungi in the rhizospheres of conifer and broadleaf trees in urban parks. This will greatly enhance our knowledge of ECM fungal communities under urban stresses, and the findings can be utilized by urban planners to improve urban ecosystem services.


Assuntos
Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Plantas/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Biodiversidade , DNA Fúngico/genética , Florestas , Fungos/classificação , Fungos/genética , Micorrizas/classificação , Micorrizas/genética , Parques Recreativos
5.
Proc Natl Acad Sci U S A ; 111(40): 14478-83, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246582

RESUMO

Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.


Assuntos
Biodiversidade , Ecossistema , Plantas/metabolismo , Solo/química , Animais , Biomassa , Pradaria , Ciclo do Nitrogênio , Plantas/classificação , Dinâmica Populacional , Solo/parasitologia , Microbiologia do Solo
6.
Proc Natl Acad Sci U S A ; 110(35): 14296-301, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940339

RESUMO

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Solo , Dióxido de Carbono/análise , Metano/análise , Oxigênio/análise
7.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
8.
J Environ Manage ; 164: 46-52, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342266

RESUMO

Glyphosate (N-(phosphonomethyl) glycine), a commonly used herbicide in agriculture can leach to deeper soil layers and settle in surface- and ground waters. To mitigate the leaching of pesticides and nutrients, biochar has been suggested as a potential soil amendment due to its ability to sorb both organic and inorganic substances. However, the efficiency of biochar in retaining agro-chemicals in the soil is likely to vary with feedstock material and pyrolysis conditions. A greenhouse pot experiment, mimicking a crop rotation cycle of three plant genera, was established to study the effects of pyrolysis temperature on the ability of birch (Betula sp.) wood originated biochar to reduce the leaching of (i) glyphosate, (ii) its primary degradation product AMPA and (iii) phosphorus from the soil. The biochar types used were produced at three different temperatures: 300 °C (BC300), 375 °C (BC375) and 475 °C (BC475). Compared to the control treatment without biochar, the leaching of glyphosate was reduced by 81%, 74% and 58% in BC300, BC375 and BC475 treated soils, respectively. The respective values for AMPA were 46%, 39% and 23%. Biochar had no significant effect on the retention of water-soluble phosphorus in the soil. Our results corroborate earlier findings on pesticides, suggesting that biochar amendment to the soil is a promising way to reduce also the leaching of glyphosate. Importantly, the ability of biochar to adsorb agro-chemicals depends on the temperature at which feedstock is pyrolysed.


Assuntos
Betula , Carvão Vegetal , Solo/química , Poluição da Água/prevenção & controle , Madeira/química , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Glicina/análogos & derivados , Glicina/química , Herbicidas/química , Praguicidas , Fósforo , Poluentes do Solo/química , Temperatura , Glifosato
9.
Ecotoxicology ; 23(3): 437-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553833

RESUMO

The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.


Assuntos
Invertebrados/efeitos dos fármacos , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Finlândia , Nematoides/efeitos dos fármacos , Árvores , Armas
10.
Ecology ; 94(2): 267-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23691644

RESUMO

Massive moth outbreaks cause large-scale damage in subarctic mountain birch forests with a concomitant decrease in carbon flux to mycorrhizal fungi and an increased deposition of dissolved carbon and nutrients as moth frass into soil. We investigated impacts of moth herbivory along three replicated gradients with three levels of moth herbivory (undamaged, once damaged, repeatedly damaged) on soil nutrient levels and biological parameters. We found an increase in soil nutrients and in the biomass of enchytraeid worms, which are key faunal decomposers. Fungi bacteria ratio and C:N ratio decreased in humus with increasing severity of herbivory. Our findings suggest enhanced resource turnover in mountain birch forests due to massive moth herbivory. This may provide a shortcut for carbon and nutrient input to subarctic soils, which largely bypasses the main routes of carbon from plants to soil via mycorrhizal and litter-decomposing fungi. Moreover, a temporal shift occurs in carbon allocation to soil, providing decomposers an opportunity to use an early-season peak in resource availability. Our results suggest a hitherto unappreciated role of massive insect herbivore attacks on resource dynamics in subarctic ecosystems.


Assuntos
Betula/fisiologia , Ecossistema , Herbivoria/fisiologia , Mariposas/fisiologia , Árvores/fisiologia , Animais , Dinâmica Populacional
11.
Oecologia ; 170(3): 821-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22555357

RESUMO

Soils deliver important ecosystem services, such as nutrient provision for plants and the storage of carbon (C) and nitrogen (N), which are greatly impacted by drought. Both plants and soil biota affect soil C and N availability, which might in turn affect their response to drought, offering the potential to feed back on each other's performance. In a greenhouse experiment, we compared legacy effects of repeated drought on plant growth and the soil food web in two contrasting land-use systems: extensively managed grassland, rich in C and with a fungal-based food web, and intensively managed wheat lower in C and with a bacterial-based food web. Moreover, we assessed the effect of plant presence on the recovery of the soil food web after drought. Drought legacy effects increased plant growth in both systems, and a plant strongly reduced N leaching. Fungi, bacteria, and their predators were more resilient after drought in the grassland soil than in the wheat soil. The presence of a plant strongly affected the composition of the soil food web, and alleviated the effects of drought for most trophic groups, regardless of the system. This effect was stronger for the bottom trophic levels, whose resilience was positively correlated to soil available C. Our results show that plant belowground inputs have the potential to affect the recovery of belowground communities after drought, with implications for the functions they perform, such as C and N cycling.


Assuntos
Secas , Cadeia Alimentar , Desenvolvimento Vegetal , Plantas/metabolismo , Microbiologia do Solo , Solo , Animais , Disponibilidade Biológica , Carbono/farmacocinética , Ecossistema , Inglaterra , Fungos , Herbivoria , Nematoides , Nitrogênio/farmacocinética , Ciclo do Nitrogênio , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Triticum
13.
Ecology ; 103(10): e3773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35633474

RESUMO

Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicada spp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant-available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant-available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial- and fungal-feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial-feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.


Assuntos
Artrópodes , Hemípteros , Animais , Carbono , Ecossistema , Cadeia Alimentar , Nitrogênio , Plantas , Solo , Árvores
14.
Sci Total Environ ; 817: 152855, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998781

RESUMO

Urban hydrology is characterized by increased runoff and various pollutant sources. We studied the spatio-temporal patterns of stormwater metal (Al, V, Cr, Mn, Fe, Cu, Zn, and Pb) concentrations and loads in five urbanized and one rural catchment in Southern Finland. The two-year continuous monitoring revealed a non-linear seasonal relationship between catchment urban intensity and metal export. For runoff, seasonal variation decreased with increasing imperviousness. The most urbanized catchments experienced greatest temporal variation in metal concentrations: the annual Cu and Zn loads in most of the studied urbanized catchments were up to 86 times higher compared to the rural site, whereas Fe loads in the urbanized catchments were only circa 29% of the rural load. Total metal levels were highest in the winter, whereas the winter peak of dissolved metal concentrations was less pronounced. The collection of catchment characteristics explained well the total metal concentrations, whereas for the dissolved concentrations the explanatory power was weaker. Our catchment-scale analysis revealed a mosaic of mainly diffuse pollutant sources and calls for catchment-scale management designs. As urban metal export occurred across seasons, solutions that operate also in cold conditions are needed.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Ambientais/análise , Finlândia , Metais Pesados/análise , Chuva , Estações do Ano , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 438: 129338, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35785742

RESUMO

Heavy metals (HMs) and total petroleum hydrocarbons (TPHs) in soils can be detrimental to both soil microorganisms and public health. However, the effects of HMs and TPHs on microbes as well as the consequent microbial-derived health risk remains unclear in soils by local roads where citizens are clearly accessible to traffic-derived pollutants. Herein, we sampled 84 roadside soils throughout Shanghai. We measured the levels of soil edaphic factors, 6 HMs, and alkane TPHs. We further focused on the responses of bacterial and fungal communities assessed via sequencing and network analysis. Results showed that all soil HMs exceeded background levels of Shanghai soil, while the levels of TPHs are comparable to unpolluted sites. Bacterial network nodes and links decreased sharply under HM stress whereas that of fungal networks remained unchanged. The differential pattern was attributed to the asynchronous response of key classes that fungal key classes were more resistant to HMs than bacteria. In addition, 66.8 % of fungal genera associated with immune-mediated disease increased with increased HM stress for its HM tolerance. Together our findings indicate that despite the relatively stable fungal community in response to environmental stresses, the elevation of harmful fungi likely pose threats to health of urban dwellers.


Assuntos
Metais Pesados , Microbiota , Petróleo , Poluentes do Solo , Bactérias/genética , China , Hidrocarbonetos/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
16.
Environ Pollut ; 292(Pt B): 118379, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662594

RESUMO

Microorganisms in urban greenspaces play key roles in ecosystem service provision and potentially influence human health. Increasing evidence suggests that anthropogenic disturbance poses constant stress on urban microbial communities, yet, as previous studies have focused on non-contaminated greenspaces, it has remained largely unknown how microorganisms respond to anthropogenic stress in roadside greenspaces with contamination. Our previous effort determined phyllosphere PAHs of camphor trees in 84 sites of roadside greenspaces along the urban-rural gradient in Shanghai. Here, we further investigated the phyllosphere microbial communities (PMCs) of the same sites across the same urban categories, including urban, suburban, and rural areas using high-throughput DNA sequencing. We aimed to explore how PMCs, especially those associated with immune-mediated diseases (IMDs), were affected by PAHs and the surrounding land-use types. We found that several microorganisms associated with increasing IMD risk were stimulated by PAHs. The composition of PMCs differed between the three urban categories which can be largely explained by the variation of phyllosphere PAH concentration and the surrounding land-use types. Similar to our previous study, suburban areas were linked with the most potential adverse health effects, where we observed the lowest bacterial diversity, the highest relative abundance of IMD-associated bacteria, and the highest relative abundance of Pathotroph. Urban green-blue infrastructure (GBI) was positively correlated with the diversity of PMCs, whereas urban grey infrastructure tended to homogenize PMCs. Notably, GBI also reduced the relative abundance of IMD-associated and pathogenic microbes, indicating the potential health benefits of GBI in land-use planning. Taken together, our study emphasizes the need to further investigate environmental communities in contaminated traffic environments, as human microbiomes are directly exposed to risky microorganisms.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Bactérias/genética , China , Humanos , Parques Recreativos
17.
Sci Total Environ ; 774: 145129, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609825

RESUMO

Urban soils can, when not sealed, store a considerable amount of carbon (C) especially under cool climates. Soil C sequestration is controlled by plant functional type, but the mechanisms by which plant types affect C accumulation in urbanised settings is poorly known. We selected 27 urban parks of varying ages (young: 5-15, old: >70 years) and 10 reference forests (>80 years) in southern Finland to study whether the ability of soils to store C relates to (i) the decomposition rate of different litter types (recalcitrant vs. labile), and/or (ii) organic matter (OM) input via root production among three common plant functional types (deciduous trees, evergreen trees, grass/lawn). Our results suggest that the high soil C accumulation under evergreen trees can result from low needle litter decomposability, accompanied by a low soil CO2 efflux. Furthermore, high root production by evergreen trees compared to deciduous trees and lawns, likely reflects the high % OM under evergreen trees. We showed that plant effects on C inputs and outputs are modulated, either directly or indirectly, by park age so that these effects are accentuated in old parks. Our results suggest that despite the capacity of evergreen trees to accumulate C in soils in urban parks, this capacity is far less compared to soils in forests of the same age. OM content under deciduous trees did not differ between old parks and reference forests, suggesting that the raking of leaves in the fall has a surprisingly small impact on OM and C accumulation in urban parks. Soil OM content is an important measure that controls various ecosystem services in cities and elsewhere. Therefore, increasing the proportion of evergreen trees in urban parks in cool cities is a good option to boost the ecosystem services capacity in the often strongly disturbed urban soils.


Assuntos
Solo , Árvores , Carbono , Cidades , Ecossistema , Finlândia , Florestas
18.
J Environ Qual ; 50(2): 465-475, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33480440

RESUMO

Creative solutions to manage stormwater include ecologically based designs, such as biofilter structures. A laboratory experiment was established to study the ability of biofilters to remove nutrients, metals, total suspended solids (TSS), and total organic C originating from roadside stormwater as melted snow. Special attention was paid to the removal of P. In addition, the fate of microplastics (MPs) in the biofilters was followed. The materials selected for biofilters were (a) crushed light-expanded clay aggregates without biochar or amended with biochar, (b) Filtralite P clay aggregates, (c) crushed concrete, or (d) filter sand. A layer to support grass growth was placed above these materials. Stormwater was rich in TSS with associated P and metals, which were substantially retained by all biofilters. Filtralite and concrete had almost 100% P removal, but the high pH had adverse effects on plants. Light-expanded clay aggregates had lower retention of P, and, when mixed with biochar (30% v/v), the leaching of P increased and N retention was improved. None of the materials was ideal for treating both nutrients and metals, but sand was generally best. Vegetation improved N retention and stormwater infiltration. Plant roots formed preferential pathways for water and associated substances, evidenced by the accumulation of MPs along root channels. No MPs were found in discharge. Given the high loading of suspended solids and associated contaminants in snowmelt from traffic areas and their efficient retention in biofiltration, results of this study suggest the implementation of such stormwater management solutions along road verges.


Assuntos
Filtração , Purificação da Água , Metais , Microplásticos , Nutrientes , Plásticos , Chuva
19.
Sci Total Environ ; 725: 138369, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278181

RESUMO

Urban soil can store large amounts of carbon (C) and nitrogen (N). To accurately estimate C and N storage in urban soils, C and N contents underneath impervious surfaces - the most prevalent land cover type in cities - should be taken into account. To date, however, only few studies have reported urban soil C and N content underneath impervious surfaces, and no data exist for cities under cold/cool climates, such as the Boreal zone. Here, we studied, for the first time, the effects of sealing on soil C and N storage in a Boreal city. Sealed soils were sampled for physico-chemical and biological parameters from 13 sites in the city of Lahti, Finland, at three depths (0-10 and 45-55 cm, representing the construction layer composed of gravel, other moraine material and crushed rock, and the native soil layer beneath the ca. 1 m thick construction layer). Our results show that urban soils underneath impervious surfaces in Finland contain 11 and 31 times less C and N content, respectively, compared with warmer regions. This is due to a deep C and N deficient construction layer below sealed surfaces. Even though impervious surfaces cover ca. twice the area of pervious surfaces in the centre of Lahti, we estimate that only 6% and 4% of urban soil C and N, respectively, are stored underneath them. Furthermore, we found very little C and N accumulation underneath the sealed surfaces via root growth and/or leakage through ageing asphalt. Our results show that soil sealing, in concert with a massive top soil removal typical to cold climates, induces a considerable loss of C and N in Boreal urban areas.

20.
Environ Pollut ; 266(Pt 2): 115294, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798905

RESUMO

Trees and other vegetation have been advocated as a mitigation measure for urban air pollution mainly due to the fact that they passively filter particles from the air. However, mounting evidence suggests that vegetation may also worsen air quality by slowing the dispersion of pollutants and by producing volatile organic compounds that contribute to formation of ozone and other secondary pollutants. We monitored nanoparticle (>10 nm) counts along distance gradients away from major roads along paired transects across open and forested landscapes in Baltimore (USA), Helsinki (Finland) and Shenyang (China) - i.e. sites in three biomes with different pollution levels - using condensation particle counters. Mean particle number concentrations averaged across all sampling sites were clearly reduced (15%) by the presence of forest cover only in Helsinki. For Baltimore and Shenyang, levels showed no significant difference between the open and forested transects at any of the sampling distances. This suggests that nanoparticle deposition on trees is often counterbalanced by other factors, including differing flow fields and aerosol processes under varying meteorological conditions. Similarly, consistent differences in high frequency data patterns between the transects were detected only in Helsinki. No correlations between nanoparticle concentrations and solar radiation or local wind speed as affecting nanoparticle abundances were found, but they were to some extent associated with canopy closure. These data add to the accumulating evidence according to which trees do not necessarily improve air quality in near-road environments.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Baltimore , China , Monitoramento Ambiental , Finlândia , Florestas , Material Particulado/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa