Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288573

RESUMO

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fibrilinas/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Fibrilina-1/metabolismo , Ruptura Aórtica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Oxirredução , Modelos Animais de Doenças , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapêutico
2.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
4.
J Cell Mol Med ; 21(1): 81-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27502584

RESUMO

Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src-dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi-scale approach to determine the molecular mechanisms behind defective Src-dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src-dependent cytoskeletal remodelling. qRT-PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR-203 increased almost twofold in aged aorta. Increased miR-203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin-1 and paxillin in aged aorta. Probing with phospho-specific antibodies confirmed that overexpression of miR-203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR-203 into aortic tissue from young mice increased phenylephrine-induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR-203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR-203 expression. Thus, the age-induced increase in miR-203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR-203 promotes a re-programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.


Assuntos
Envelhecimento/genética , Aorta/patologia , Citoesqueleto/patologia , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Animais , Aorta/efeitos dos fármacos , Caveolina 1/genética , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Paxilina/genética , Fenilefrina/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Rigidez Vascular/efeitos dos fármacos , Rigidez Vascular/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1382-1391, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28185955

RESUMO

Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE: Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS: Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS: Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.


Assuntos
Aterosclerose/enzimologia , Endotélio Vascular/enzimologia , Epóxido Hidrolases/metabolismo , Macrófagos/enzimologia , NADPH Oxidase 4/metabolismo , Substituição de Aminoácidos , Animais , Aterosclerose/genética , Aterosclerose/patologia , Adesão Celular/genética , Endotélio Vascular/patologia , Epóxido Hidrolases/genética , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , NADPH Oxidase 4/genética
6.
J Mol Cell Cardiol ; 92: 30-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26812119

RESUMO

UNLABELLED: Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE: Our goal was to investigate the role of smooth muscle Nox4 in atherosclerosis. APPROACH AND RESULTS: Atherosclerosis-prone conditions (disturbed blood flow and Western diet) increased Nox4 mRNA level in smooth muscle of arteries. To address whether upregulated smooth muscle Nox4 under atherosclerosis-prone conditions was directly involved in the development of atherosclerosis, mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), specifically in smooth muscle, were generated on a FVB/N ApoE deficient genetic background to counter the effect of increased smooth muscle Nox4. Nox4DN significantly decreased aortic stiffness and atherosclerotic lesions, with no effect on blood pressure. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly downregulated in Nox4DN smooth muscle cells (SMC), at both mRNA and protein levels. Downregulation of sEH by siRNA decreased SMC proliferation and migration, and suppressed inflammation and macrophage adhesion to SMC. CONCLUSIONS: Downregulation of smooth muscle Nox4 inhibits atherosclerosis by suppressing sEH, which, at least in part, accounts for inhibition of SMC proliferation, migration and inflammation.


Assuntos
Aterosclerose/genética , Inflamação/genética , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/genética , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/patologia , Pressão Sanguínea/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/patologia , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
7.
J Mol Cell Cardiol ; 72: 56-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631774

RESUMO

Diet-induced obesity and metabolic syndrome are important contributors to cardiovascular diseases. The decreased nitric oxide (NO) bioactivity in endothelium and the impaired response of smooth muscle cell (SMC) to NO significantly contribute to vascular pathologies, including atherosclerosis and arterial restenosis after angioplasty. Sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is an important mediator of NO function in both endothelial cells and SMCs, and its irreversible oxidation impairs its stimulation by NO. We used C57BL/6J mice fed a high fat high sucrose diet (HFHSD) to study the role of SMC SERCA in diet-induced obesity and metabolic syndrome. We found that HFHSD upregulated Nox2 based NADPH oxidase, induced inflammation, increased irreversible SERCA oxidation, and suppressed the response of aortic SERCA to NO. Cultured aortic SMCs from mice fed HFHSD showed increased reactive oxygen species production, Nox2 upregulation, irreversible SERCA oxidation, inflammation, and a decreased ability of NO to inhibit SMC migration. Overexpression of wild type SERCA2b or downregulation of Nox2 restored NO-mediated inhibition of migration in SMCs isolated from HFHSD-fed mice. In addition, tumor necrosis factor alpha (TNFα) increased Nox2 which induced SERCA oxidation and inflammation. Taken together, Nox2 induced by HFHSD plays significant roles in controlling SMC responses to NO and TNFα-mediated inflammation, which may contribute to the development of cardiovascular diseases in diet-induced obesity and metabolic syndrome.


Assuntos
Glicoproteínas de Membrana/metabolismo , Síndrome Metabólica/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Movimento Celular , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Glicoproteínas de Membrana/genética , Síndrome Metabólica/etiologia , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NADPH Oxidase 2 , NADPH Oxidases/genética , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Oxirredução , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais , Sacarose/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
8.
Am J Pathol ; 182(6): 2391-406, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583651

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by pulmonary vasculopathy with elevation of pulmonary artery pressure, often culminating in right ventricular failure. GATA-6, a member of the GATA family of zinc-finger transcription factors, is highly expressed in quiescent vasculature and is frequently lost during vascular injury. We hypothesized that endothelial GATA-6 may play a critical role in the molecular mechanisms underlying endothelial cell (EC) dysfunction in PAH. Here we report that GATA-6 is markedly reduced in pulmonary ECs lining both occluded and nonoccluded vessels in patients with idiopathic and systemic sclerosis-associated PAH. GATA-6 transcripts are also rapidly decreased in rodent PAH models. Endothelial GATA-6 is a direct transcriptional regulator of genes controlling vascular tone [endothelin-1, endothelin-1 receptor type A, and endothelial nitric oxide synthase (eNOS)], pro-inflammatory genes, CX3CL1 (fractalkine), 5-lipoxygenease-activating protein, and markers of vascular remodeling, including PAI-1 and RhoB. Mice with the genetic deletion of GATA-6 in ECs (Gata6-KO) spontaneously develop elevated pulmonary artery pressure and increased vessel muscularization, and these features are further exacerbated in response to hypoxia. Furthermore, innate immune cells including macrophages (CD11b(+)/F4/80(+)), granulocytes (Ly6G(+)/CD45(+)), and dendritic cells (CD11b(+)/CD11c(+)) are significantly increased in normoxic Gata6-KO mice. Together, our findings suggest a critical role of endothelial GATA-6 deficiency in development and disease progression in PAH.


Assuntos
Endotélio Vascular/metabolismo , Fator de Transcrição GATA6/deficiência , Hipertensão Pulmonar/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/biossíntese , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Doença Crônica , Progressão da Doença , Regulação para Baixo/fisiologia , Células Endoteliais/fisiologia , Hipertensão Pulmonar Primária Familiar , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Pulmão/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Pneumonia/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Escleroderma Sistêmico/complicações
10.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251710

RESUMO

This methodology paper highlights the surgical nuances of a rodent model of venous thrombosis, specifically in the context of cancer-associated thrombosis (CAT). Deep venous thrombosis is a common complication in cancer survivors and can be potentially fatal. The current murine venous thrombosis models typically involve a complete or partial mechanical occlusion of the inferior vena cava (IVC) using a suture. This procedure induces a total or partial stasis of blood and endothelial damage, triggering thrombogenesis. The current models have limitations such as higher variability in clot weights, significant mortality rate, and prolonged learning curve. This report introduces surgical refinements using vascular clips to address some of these limitations. Using a syngeneic colon cancer xenograft mouse model, we employed customized vascular clips to ligate the infrarenal vena cava. These clips allow residual lip space similar to a 5-0 polypropylene suture after IVC ligations. Mice with the suture method served as controls. The vascular clip method resulted in a consistent reproducible partial vascular occlusion and greater clot weights with less variability than the suture method. The larger clot weights, greater clot mass, and clot to the IVC luminal surface area were expected due to the higher pressure profile of the vascular clips compared to a 6-0 polypropylene suture. The approach was validated by gray scale ultrasonography, which revealed consistently greater clot mass in the infrarenal vena cava with vascular clips compared to the suture method. These observations were further substantiated with the immunofluorescence staining. This study offers an improved method to generate a venous thrombosis model in mice, which can be employed to deepen the mechanistic understanding of CAT and in translational research such as drug discovery.


Assuntos
Neoplasias do Colo , Trombose Venosa , Humanos , Animais , Camundongos , Polipropilenos , Trombose Venosa/etiologia , Bioensaio , Modelos Animais de Doenças
11.
J Mech Behav Biomed Mater ; 148: 106187, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37875040

RESUMO

Healthy arteries are continuously subjected to diverse mechanical stimuli and adapt in order to maintain a mechanical homeostasis which is characterized by a uniform distribution of wall stresses. However, aging may compromise the homeostatic microenvironment within arteries. Structural heterogeneity has been suggested as a potential microstructural mechanism that could lead to homogeneous stress distribution across the arterial wall. Our previous study on the unfolding and stretching of the elastic lamellae revealed the underlying microstructural mechanism for equalizing the circumferential stresses through wall; inner elastic layers are wavier and unfold more than the outer layers which helps to evenly distribute lamellar stretching (Yu et al., 2018). In this study, we investigated the effect of aging on lamellar deformation and its implications for tissue homeostasis. Common carotid arteries from aged mice were imaged under a multi-photon microscope while subjected to biaxial extension and inflation at five different pressures ranging from 0 up to 120 mmHg. Lamellar unfolding during pressurization was then determined from the reconstructed cross-sectional images of elastic lamellae. Tissue-level circumferential stretch was combined with the lamellar unfolding to calculate lamellar stretching. Our results revealed that the straightness gradient of aged elastic lamellae is similar to the young ones. However, during pressurization, the inner elastic lamella of the aged mice unfolded significantly more than the inner layer in young arteries. An important finding of our study is the uneven increase in inter-lamellar space which contributed to a nonuniform stretching of the elastic lamellae of aged mice arteries, elevated stress gradient, and a shifting of the load-bearing component to adventitia. Our results shed light into the complex microstructural mechanisms that take place in aging and adversely affect arterial mechanical behavior and homeostasis.


Assuntos
Artérias Carótidas , Artéria Carótida Primitiva , Animais , Camundongos , Envelhecimento , Pressão , Estresse Mecânico
12.
J Clin Med ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685580

RESUMO

Vascular aging, i.e., the deterioration of the structure and function of the arteries over the life course, predicts cardiovascular events and mortality. Vascular degeneration can be recognized before becoming clinically symptomatic; therefore, its assessment allows the early identification of individuals at risk. This opens the possibility of minimizing disease progression. To review these issues, a search was completed using PubMed, MEDLINE, and Google Scholar from 2000 to date. As a network of clinicians and scientists involved in vascular medicine, we here describe the structural and functional age-dependent alterations of the arteries, the clinical tools for an early diagnosis of vascular aging, and the cellular and molecular events implicated. It emerges that more studies are necessary to identify the best strategy to quantify vascular aging, and to design proper physical activity programs, nutritional and pharmacological strategies, as well as social interventions to prevent, delay, and eventually revert the disease.

13.
Sci Rep ; 13(1): 6593, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087509

RESUMO

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Transcrição GATA6 , Estresse Oxidativo , Hipertensão Arterial Pulmonar , Animais , Camundongos , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/patologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Remodelação Vascular
14.
Front Bioeng Biotechnol ; 10: 842754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433650

RESUMO

Aging and disease alter the composition and elastic properties of the aortic wall resulting in shape changes in blood pressure waveform (BPW). Here, we propose a new index, harmonic distortion (HD), to characterize BPW and its relationship with other in vitro and in vivo measures. Using a Fourier transform of the BPW, HD is calculated as the ratio of energy above the fundamental frequency to that at the fundamental frequency. Male mice fed either a normal diet (ND) or a high fat, high sucrose (HFHS) diet for 2-10 months were used to study BPWs in diet-induced metabolic syndrome. BPWs were recorded for 20 s hourly for 24 h, using radiotelemetry. Pulse wave velocity (PWV), an in vivo measure of arterial stiffness, was measured in the abdominal aorta via ultrasound sonography. Common carotid arteries were excised from a subset of mice to determine the tangent modulus using biaxial tension-inflation test. Over a 24-h period, both HD and systolic blood pressure (SBP) show a large variability, however HD linearly decreases with increasing SBP. HD is also linearly related to tangent modulus and PWV with slopes significantly different between the two diet groups. Overall, our study suggests that HD is sensitive to changes in blood pressure and arterial stiffness and has a potential to be used as a noninvasive measure of arterial stiffness in aging and disease.

15.
Front Bioeng Biotechnol ; 10: 862996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392404

RESUMO

Metabolic syndrome increases the risk of cardiovascular diseases. Arteries gradually stiffen with aging; however, it can be worsened by the presence of conditions associated with metabolic syndrome. In this study, we investigated the combined effects of diet-induced metabolic syndrome and aging on the biomechanical properties of mouse common carotid arteries (CCA). Male mice at 2 months of age were fed a normal or a high fat and high sucrose (HFHS) diet for 2 (young group), 8 (adult group) and 18-20 (old group) months. CCAs were excised and subjected to in vitro biaxial inflation-extension tests and the Cauchy stress-stretch relationships were determined in both the circumferential and longitudinal directions. The elastic energy storage of CCAs was obtained using a four-fiber family constitutive model, while the material stiffness in the circumferential and longitudinal directions was computed. Our study showed that aging is a dominant factor affecting arterial remodeling in the adult and old mice, to a similar extent, with stiffening manifested with a significantly reduced capability of energy storage by ∼50% (p < 0.05) and decreases in material stiffness and stress (p < 0.05), regardless of diet. On the other hand, high fat high sucrose diet resulted in an accelerated arterial remodeling in the young group at pre-diabetic stage by affecting the circumferential material stiffness and stress (p < 0.05), which was eventually overshadowed by aging progression. These findings have important implications on the effects of metabolic syndrome on elastic arteries in the younger populations.

16.
Circ Res ; 104(4): 506-13, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19122175

RESUMO

Cyclooxygenase (COX)-2 is among the endothelial genes upregulated by uniform laminar shear stress (LSS), characteristically associated with atherosclerotic lesion-protected areas. We have addressed whether the induction of COX-2-dependent prostanoids in endothelial cells by LSS plays a role in restraining endothelial tumor necrosis factor (TNF)-alpha generation, a proatherogenic cytokine, through the induction of heme oxygenase-1 (HO)-1, an antioxidant enzyme. In human umbilical vein endothelial cells (HUVECs) exposed to steady LSS of 10 dyn/cm(2) for 6 hours, COX-2 protein was significantly induced, whereas COX-1 and the downstream synthases were not significantly modulated. This was associated with significant (P<0.05) increase of 6-keto-prostaglandin (PG)F(1alpha) (the hydrolysis product of prostacyclin), PGE(2), and PGD(2). In contrast, TNF-alpha released in the medium in 6 hours (3633+/-882 pg) or detected in cells lysates (1091+/-270 pg) was significantly (P<0.05) reduced versus static condition (9100+/-2158 and 2208+/-300 pg, respectively). Coincident induction of HO-1 was detected. The finding that LSS-dependent reduction of TNF-alpha generation and HO-1 induction were abrogated by the selective inhibitor of COX-2 NS-398, the nonselective COX inhibitor aspirin, or the specific prostacyclin receptor (IP) antagonist RO3244794 illuminates the central role played by LSS-induced COX-2-dependent prostacyclin in restraining endothelial inflammation. Carbacyclin, an agonist of IP, induced HO-1. Similarly to inhibition of prostacyclin biosynthesis or activity, the novel imidazole-based HO-1 inhibitor QC15 reversed TNF-alpha reduction by LSS. These findings suggest that inhibition of COX-2-dependent prostacyclin might contribute to acceleration of atherogenesis in patients taking traditional nonsteroidal antiinflammatory drugs (NSAIDs) and NSAIDs selective for COX-2 through downregulation of HO-1, which halts TNF-alpha generation in human endothelial cells.


Assuntos
Aterosclerose/enzimologia , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/enzimologia , Epoprostenol/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/enzimologia , Fator de Necrose Tumoral alfa/biossíntese , 6-Cetoprostaglandina F1 alfa , Aspirina/efeitos adversos , Aspirina/farmacologia , Aterosclerose/induzido quimicamente , Benzofuranos/farmacologia , Células Cultivadas , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/efeitos adversos , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Humanos , Inflamação/induzido quimicamente , Nitrobenzenos/efeitos adversos , Nitrobenzenos/farmacologia , Perfusão , Propionatos/farmacologia , Prostaglandina D2/metabolismo , Receptores de Epoprostenol , Receptores de Prostaglandina/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo , Estresse Mecânico , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacologia , Regulação para Cima
17.
Neurobiol Aging ; 100: 39-47, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33477010

RESUMO

The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Hemorragia Cerebral/patologia , Transtornos da Memória/patologia , Distúrbios Somatossensoriais/patologia , Acidente Vascular Cerebral/patologia , Tálamo/patologia , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Humanos , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Camundongos Endogâmicos C57BL , Distúrbios Somatossensoriais/diagnóstico por imagem , Distúrbios Somatossensoriais/etiologia , Acidente Vascular Cerebral/complicações , Tálamo/diagnóstico por imagem
18.
J Am Heart Assoc ; 10(18): e020441, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34533042

RESUMO

Background Persistent activation of endoplasmic reticulum stress and the unfolded protein response (UPR) induces vascular cell apoptosis, contributing to atherogenesis. Aging and hypercholesterolemia are 2 independent proatherogenic factors. How they affect vascular UPR signaling remains unclear. Methods and Results Transcriptome analysis of aortic tissues from high fat diet-fed and aged ApoE-/- mice revealed 50 overlapping genes enriched for endoplasmic reticulum stress- and UPR-related pathways. Aortae from control, Western diet (WD)-fed, and aged ApoE-/- mice were assayed for (1) 3 branches of UPR signaling (pancreatic ER eIF2-alpha kinase /alpha subunit of the eukaryotic translation initiation factor 1/activating transcription factor 4, inositol-requiring enzyme 1 alpha/XBP1s, activating transcription factor 6); (2) UPR-mediated protective adaptation (upregulation of immunoglobulin heavy chain-binding protein and protein disulfide isomerase); and (3) UPR-mediated apoptosis (induction of C/EBP homologous transcription factor, p-JNK, and cleaved caspase-3). Aortic UPR signaling was differentially regulated in the aged and WD-fed groups. Consumption of WD activated all 3 UPR branches; in the aged aorta, only the ATF6α arm was activated, but it was 10 times higher than that in the WD group. BiP and protein disulfide isomerase protein levels were significantly decreased only in the aged aorta despite a 5-fold increase in their mRNA levels. Importantly, the aortae of aged mice exhibited a substantially enhanced proapoptotic UPR compared with that of WD-fed mice. In lung tissues, UPR activation and the resultant adaptive/apoptotic responses were not significantly different between the 2 groups. Conclusions Using a mouse model of atherosclerosis, this study provides the first in vivo evidence that aging and an atherogenic diet activate differential aortic UPR pathways, leading to distinct vascular responses. Compared with dietary intervention, aging is associated with impaired endoplasmic reticulum protein folding and increased aortic apoptosis.


Assuntos
Hipercolesterolemia , Apolipoproteínas E/genética , Apoptose , Estresse do Retículo Endoplasmático , Hipercolesterolemia/genética , Isomerases de Dissulfetos de Proteínas/genética , Resposta a Proteínas não Dobradas , Animais , Camundongos , Camundongos Knockout para ApoE
20.
Front Physiol ; 11: 1047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982786

RESUMO

Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide-dependent deacetylase and the best characterized member of the sirtuins family in mammalians. Sirtuin-1 shuttles between the cytoplasm and the nucleus, where it deacetylates histones and non-histone proteins involved in a plethora of cellular processes, including survival, growth, metabolism, senescence, and stress resistance. In this brief review, we summarize the current knowledge on the anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-senescence effects of SirT1 with an emphasis on vascular diseases. Specifically, we describe recent research advances on SirT1-mediated molecular mechanisms in aortic aneurysm (AA), and how these processes relate to oxidant stress and the heme-oxygenase (HO) system. HO-1 and HO-2 catalyze the rate-limiting step of cellular heme degradation and, similar to SirT1, HO-1 exerts beneficial effects in the vasculature through the activation of anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative signaling pathways. SirT1 and HO-1 are part of an integrated system for cellular stress tolerance, and may positively interact to regulate vascular function. We further discuss sex differences in HO-1 and SirT1 activity or expression, and the potential interactions between the two proteins, in relation to the progression and severity of AA, as well as the ongoing efforts for translational applications of SirT1 activation and HO-1 induction in the treatment of cardiovascular diseases including AA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa