Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37816069

RESUMO

Identifying regions of the genome that act as barriers to gene flow between recently diverged taxa has remained challenging given the many evolutionary forces that generate variation in genetic diversity and divergence along the genome, and the stochastic nature of this variation. Progress has been impeded by a conceptual and methodological divide between analyses that infer the demographic history of speciation and genome scans aimed at identifying locally maladaptive alleles i.e. genomic barriers to gene flow. Here we implement genomewide IM blockwise likelihood estimation (gIMble), a composite likelihood approach for the quantification of barriers, that bridges this divide. This analytic framework captures background selection and selection against barriers in a model of isolation with migration (IM) as heterogeneity in effective population size (Ne) and effective migration rate (me), respectively. Variation in both effective demographic parameters is estimated in sliding windows via pre-computed likelihood grids. gIMble includes modules for pre-processing/filtering of genomic data and performing parametric bootstraps using coalescent simulations. To demonstrate the new approach, we analyse data from a well-studied pair of sister species of tropical butterflies with a known history of post-divergence gene flow: Heliconius melpomene and H. cydno. Our analyses uncover both large-effect barrier loci (including well-known wing-pattern genes) and a genome-wide signal of a polygenic barrier architecture.


Assuntos
Borboletas , Fluxo Gênico , Animais , Funções Verossimilhança , Especiação Genética , Borboletas/genética , Evolução Biológica
2.
Mol Ecol ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807966

RESUMO

Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (Ne ), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.

3.
PLoS Genet ; 16(6): e1008867, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555579

RESUMO

Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.


Assuntos
Introgressão Genética , Genética Populacional/métodos , Genoma Humano/genética , Modelos Genéticos , Polimorfismo Genético , África Subsaariana , Alelos , Antígenos/genética , População Negra/genética , Simulação por Computador , Europa (Continente) , Evolução Molecular , Haplótipos , Humanos , Proteínas de Filamentos Intermediários/genética , Receptores da Tireotropina/genética , Proteínas S100/genética , Seleção Genética , Software , População Branca/genética
4.
J Math Biol ; 70(7): 1523-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24992884

RESUMO

By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range.


Assuntos
Adaptação Biológica/genética , Modelos Genéticos , Alelos , Simulação por Computador , Evolução Molecular , Fluxo Gênico , Transferência Genética Horizontal , Ligação Genética , Genética Populacional , Haplótipos , Hibridização Genética , Conceitos Matemáticos , Probabilidade , Seleção Genética , Processos Estocásticos
5.
Wellcome Open Res ; 7: 76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507315

RESUMO

We present a genome assembly from an individual female Boloria selene (the small pearl-bordered fritillary, also known as the silver meadow fritillary; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 400 megabases in span. The complete assembly is scaffolded into 31 chromosomal pseudomolecules, with the W and Z sex chromosome assembled.

6.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771626

RESUMO

Recombination can occur either as a result of crossover or gene conversion events. Population genetic methods for inferring the rate of recombination from patterns of linkage disequilibrium generally assume a simple model of recombination that only involves crossover events and ignore gene conversion. However, distinguishing the 2 processes is not only necessary for a complete description of recombination, but also essential for understanding the evolutionary consequences of inversions and other genomic partitions in which crossover (but not gene conversion) is reduced. We present heRho, a simple composite likelihood scheme for coestimating the rate of crossover and gene conversion from individual diploid genomes. The method is based on analytic results for the distance-dependent probability of heterozygous and homozygous states at 2 loci. We apply heRho to simulations and data from the house mouse Mus musculus castaneus, a well-studied model. Our analyses show (1) that the rates of crossover and gene conversion can be accurately coestimated at the level of individual chromosomes and (2) that previous estimates of the population scaled rate of recombination ρ=4Ner under a pure crossover model are likely biased.


Assuntos
Conversão Gênica , Genoma , Animais , Evolução Biológica , Cromossomos , Genoma/genética , Desequilíbrio de Ligação , Camundongos
7.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849880

RESUMO

Current methods of identifying positively selected regions in the genome are limited in two key ways: the underlying models cannot account for the timing of adaptive events and the comparison between models of selective sweeps and sequence data is generally made via simple summaries of genetic diversity. Here, we develop a tractable method of describing the effect of positive selection on the genealogical histories in the surrounding genome, explicitly modeling both the timing and context of an adaptive event. In addition, our framework allows us to go beyond analyzing polymorphism data via the site frequency spectrum or summaries thereof and instead leverage information contained in patterns of linked variants. Tests on both simulations and a human data example, as well as a comparison to SweepFinder2, show that even with very small sample sizes, our analytic framework has higher power to identify old selective sweeps and to correctly infer both the time and strength of selection. Finally, we derived the marginal distribution of genealogical branch lengths at a locus affected by selection acting at a linked site. This provides a much-needed link between our analytic understanding of the effects of sweeps on sequence variation and recent advances in simulation and heuristic inference procedures that allow researchers to examine the sequence of genealogical histories along the genome.


Assuntos
Genoma Humano , Modelos Genéticos , Seleção Genética , Evolução Molecular , Humanos , Linhagem
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190531, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654652

RESUMO

Despite the homogenizing effect of strong gene flow between two populations, adaptation under symmetric divergent selection pressures results in partial reproductive isolation: adaptive substitutions act as local barriers to gene flow, and if divergent selection continues unimpeded, this will result in complete reproductive isolation of the two populations, i.e. speciation. However, a key issue in framing the process of speciation as a tension between local adaptation and the homogenizing force of gene flow is that the mutation process is blind to changes in the environment and therefore tends to limit adaptation. Here we investigate how globally beneficial mutations (GBMs) affect divergent local adaptation and reproductive isolation. When phenotypic divergence is finite, we show that the presence of GBMs limits local adaptation, generating a persistent genetic load at the loci that contribute to the trait under divergent selection and reducing genome-wide divergence. Furthermore, we show that while GBMs cannot prohibit the process of continuous differentiation, they induce a substantial delay in the genome-wide shutdown of gene flow. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Adaptação Biológica/genética , Fluxo Gênico , Isolamento Reprodutivo , Seleção Genética/fisiologia , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa