Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2221809120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459541

RESUMO

Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.


Assuntos
COVID-19 , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Androgênios , Antagonistas de Androgênios/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Interferon gama/uso terapêutico
2.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278875

RESUMO

Many esophageal diseases can arise during development or throughout life. Therefore, well-characterized in vitro models and detailed methods are essential for studying human esophageal development, homeostasis and disease. Here, we (1) create an atlas of the cell types observed in the normal adult human esophagus; (2) establish an ancestrally diverse biobank of in vitro esophagus tissue to interrogate homeostasis and injury; and (3) benchmark in vitro models using the adult human esophagus atlas. We created a single-cell RNA sequencing reference atlas using fresh adult esophagus biopsies and a continuously expanding biobank of patient-derived in vitro cultures (n=55 lines). We identify and validate several transcriptionally distinct cell classes in the native human adult esophagus, with four populations belonging to the epithelial layer, including basal, epibasal, early differentiating and terminally differentiated luminal cells. Benchmarking in vitro esophagus cultures to the in vivo reference using single-cell RNA sequencing shows that the basal stem cells are robustly maintained in vitro, and the diversity of epithelial cell types in culture is dependent on cell density. We also demonstrate that cultures can be grown in 2D or as 3D organoids, and these methods can be employed for modeling the complete epithelial layers, thereby enabling in vitro modeling of the human adult esophagus.


Assuntos
Esôfago , Organoides , Adulto , Humanos , Células-Tronco , Células Epiteliais/metabolismo , Diferenciação Celular
3.
J Virol ; 97(12): e0127623, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975674

RESUMO

ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex­IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.


Assuntos
COVID-19 , Células Epiteliais , Interferon Tipo I , Pulmão , Humanos , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Interferon Tipo I/imunologia , Pulmão/patologia , Pulmão/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linhagem Celular , Proliferação de Células
4.
PLoS Pathog ; 18(3): e1010377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35231079

RESUMO

SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Nat Chem Biol ; 18(1): 18-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811516

RESUMO

Many bioactive plant cyclic peptides form side-chain-derived macrocycles. Lyciumins, cyclic plant peptides with tryptophan macrocyclizations, are ribosomal peptides (RiPPs) originating from repetitive core peptide motifs in precursor peptides with plant-specific BURP (BNM2, USP, RD22 and PG1beta) domains, but the biosynthetic mechanism for their formation has remained unknown. Here, we characterize precursor-peptide BURP domains as copper-dependent autocatalytic peptide cyclases and use a combination of tandem mass spectrometry-based metabolomics and plant genomics to systematically discover five BURP-domain-derived plant RiPP classes, with mono- and bicyclic structures formed via tryptophans and tyrosines, from botanical collections. As BURP-domain cyclases are scaffold-generating enzymes in plant specialized metabolism that are physically connected to their substrates in the same polypeptide, we introduce a bioinformatic method to mine plant genomes for precursor-peptide-encoding genes by detection of repetitive substrate domains and known core peptide features. Our study sets the stage for chemical, biosynthetic and biological exploration of plant RiPP natural products from BURP-domain cyclases.


Assuntos
Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Catálise , Permeabilidade da Membrana Celular , Ciclização , Genoma de Planta , Espectrometria de Massas em Tandem
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34413211

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Lactoferrina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Células Epiteliais , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Hepatócitos , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
7.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33310900

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

8.
J Hepatol ; 78(5): 998-1006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738840

RESUMO

BACKGROUND & AIMS: Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. METHODS: HLOs were derived from three separate iPSC lines and benchmarked on two platforms for their ability to model in vitro liver function and identify hepatotoxic compounds using biochemical assays for albumin, ALT, AST, microscopy-based morphological profiling, and single-cell transcriptomics: i) HLOs dispersed in 384-well-formatted plates and exposed to a library of compounds; ii) HLOs adapted to a liver-on-chip system. RESULTS: Dispersed HLOs derived from the three iPSC lines had similar DILI predictive capacity as intact HLOs in a high-throughput screening format, allowing for measurable IC50 values of compound cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of toxicity. On-chip HLOs significantly increased albumin production, CYP450 expression, and ALT/AST release when treated with known hepatoxic drugs compared to dispersed HLOs and primary human hepatocytes. On-chip HLOs were able to predict the synergistic hepatotoxicity of tenofovir-inarigivir and displayed steatosis and mitochondrial perturbation, via phenotypic and transcriptomic analysis, on exposure to fialuridine and acetaminophen, respectively. CONCLUSIONS: The high-throughput and liver-on-chip systems exhibit enhanced in vivo-like functions and demonstrate the potential utility of these platforms for DILI risk assessment. Tenofovir-inarigivr-associated hepatotoxicity was observed and correlates with the clinical manifestation of DILI observed in patients. IMPACT AND IMPLICATIONS: Idiosyncratic (spontaneous, patient-specific) drug-induced liver injury (DILI) is difficult to study due to the lack of liver models that function as human liver tissue and are adaptable for large-scale drug screening. Human liver organoids grown from patient stem cells respond to known DILI-causing drugs in both a high-throughput and on a physiological "chip" culture system. These platforms show promise for researchers in their use as predictive models for novel drugs before entering clinical trials and as a potential in vitro diagnostic tool. Our findings support further development of patient-derived liver organoid lines and their use in the context of DILI research.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Organoides , Albuminas
9.
Antimicrob Agents Chemother ; 67(7): e0050323, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37382550

RESUMO

Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.


Assuntos
Antifúngicos , Candida albicans , Animais , Humanos , Candida albicans/metabolismo , Antifúngicos/uso terapêutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Virulência/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Hifas , Mamíferos/metabolismo
10.
J Virol ; 96(22): e0085522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342297

RESUMO

Human norovirus (HNoV) accounts for one-fifth of all acute viral gastroenteritis worldwide and an economic burden of ~$60 billion globally. The lack of treatment options against HNoV is in part due to the lack of cultivation systems. Recently, a model of infection in biopsy-derived human intestinal enteroids (HIE) has been described: 3D-HIE are first dispersed in 2D-monolayers and differentiated prior to infection, resulting in a labor-intensive, time-consuming procedure. Here, we present an alternative protocol for HNoV infection of 3D-HIE. We found that 3D-HIE differentiated as efficiently as 2D-monolayers. In addition, immunofluorescence-based quantification of UEA-1, a lectin that stains the villus brush border, revealed that ~80% of differentiated 3D-HIE spontaneously undergo polarity inversion, allowing for viral infection without the need for microinjection. Infection with HNoV GII.4-positive stool samples attained a fold-increase over inoculum of ~2 Log10 at 2 days postinfection or up to 3.5 Log10 when ruxolitinib, a JAK1/2-inhibitor, was added. Treatment of GII.4-infected 3D-HIE with the polymerase inhibitor 2'-C-Methylcytidine (2CMC) and other antivirals showed a reduction in viral infection, suggesting that 3D-HIE are an excellent platform to test anti-infectives. The transcriptional host response to HNoV was then investigated by RNA sequencing in infected versus uninfected 3D-HIE in the presence of ruxolitinib to focus on virus-associated signatures while limiting interferon-stimulated gene signatures. The analysis revealed upregulated hormone and neurotransmitter signal transduction pathways and downregulated glycolysis and hypoxia-response pathways upon HNoV infection. Overall, 3D-HIE have proven to be a highly robust model to study HNoV infection, screen antivirals, and to investigate the host response to HNoV infection. IMPORTANCE The human norovirus (HNoV) clinical and socio-economic impact calls for immediate action in the development of anti-infectives. Physiologically relevant in vitro models are hence needed to study HNoV biology, tropism, and mechanisms of viral-associated disease, and also as a platform to identify antiviral agents. Biopsy-derived human intestinal enteroids are a biomimetic of the intestinal epithelium and were recently described as a model that supports HNoV infection. However, the established protocol is time-consuming and labor-intensive. Therefore, we sought to develop a simplified and robust alternative model of infection in 3D enteroids that undergoes differentiation and spontaneous polarity inversion. Advantages of this model are the shorter experimental time, better infection yield, and spatial integrity of the intestinal epithelium. This model is potentially suitable for the study of other pathogens that infect intestinal cells from the apical surface but also for unraveling the interactions between intestinal epithelium and indigenous bacteria of the human microbiome.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/fisiologia , Pirazóis , Antivirais/farmacologia
11.
PLoS Pathog ; 17(12): e1010138, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898650

RESUMO

Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.


Assuntos
Antígenos de Protozoários/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Animais , Humanos , Camundongos
12.
Cytometry A ; 103(11): 915-926, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37789738

RESUMO

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.


Assuntos
Bioensaio , Microscopia , Humanos , Microscopia/métodos , Bioensaio/métodos
13.
J Am Chem Soc ; 144(17): 7686-7692, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438481

RESUMO

Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.


Assuntos
Peptídeos Cíclicos , Triptofano , Austrália , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Plantas , Processamento de Proteína Pós-Traducional , Triptofano/metabolismo
14.
J Dairy Sci ; 105(4): 2791-2802, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35221061

RESUMO

Bovine lactoferrin (bLF), a naturally occurring glycoprotein found in milk, has bioactive characteristics against many microbes, viruses, and other pathogens. Bovine lactoferrin strongly inhibits SARS-CoV-2 infection in vitro through direct entry inhibition and immunomodulatory mechanisms. This study reports on the anti-SARS-CoV-2 efficacy of commercially available bLF and common dairy ingredients in the human lung cell line H1437 using a custom high-content imaging and analysis pipeline. We also show for the first time that bLF has potent efficacy across different viral strains including the South African B.1.351, UK B.1.1.7, Brazilian P.1, and Indian Delta variants. Interestingly, we show that bLF is most potent against the B.1.1.7 variant [half-maximal inhibitory concentration (IC50) = 3.7 µg/mL], suggesting that this strain relies on entry mechanisms that are strongly inhibited by bLF. We also show that one of the major proteolysis products of bLF, lactoferricin B 17-41, has a modest anti-SARS-CoV-2 activity that could add to the clinical significance of this protein for SARS-CoV-2 treatment as lactoferricin is released by pepsin during digestion. Finally, we show that custom chewable lactoferrin tablets formulated in dextrose or sorbitol have equivalent potency to unformulated samples and provide an option for future human clinical trials. Lactoferrin's broad inhibition of SARS-CoV-2 variants in conjunction with the low cost and ease of production make this an exciting clinical candidate for treatment or prevention of SARS-CoV-2 in the future.


Assuntos
COVID-19 , Lactoferrina , Animais , COVID-19/veterinária , Humanos , Lactoferrina/farmacologia , Leite , SARS-CoV-2
15.
J Occup Environ Hyg ; 18(7): 345-360, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34129448

RESUMO

First responders may have high SARS-CoV-2 infection risks due to working with potentially infected patients in enclosed spaces. The study objective was to estimate infection risks per transport for first responders and quantify how first responder use of N95 respirators and patient use of cloth masks can reduce these risks. A model was developed for two Scenarios: an ambulance transport with a patient actively emitting a virus in small aerosols that could lead to airborne transmission (Scenario 1) and a subsequent transport with the same respirator or mask use conditions, an uninfected patient; and remaining airborne SARS-CoV-2 and contaminated surfaces due to aerosol deposition from the previous transport (Scenario 2). A compartmental Monte Carlo simulation model was used to estimate the dispersion and deposition of SARS-CoV-2 and subsequent infection risks for first responders, accounting for variability and uncertainty in input parameters (i.e., transport duration, transfer efficiencies, SARS-CoV-2 emission rates from infected patients, etc.). Infection risk distributions and changes in concentration on hands and surfaces over time were estimated across sub-Scenarios of first responder respirator use and patient cloth mask use. For Scenario 1, predicted mean infection risks were reduced by 69%, 48%, and 85% from a baseline risk (no respirators or face masks used) of 2.9 × 10-2 ± 3.4 × 10-2 when simulated first responders wore respirators, the patient wore a cloth mask, and when first responders and the patient wore respirators or a cloth mask, respectively. For Scenario 2, infection risk reductions for these same Scenarios were 69%, 50%, and 85%, respectively (baseline risk of 7.2 × 10-3 ± 1.0 × 10-2). While aerosol transmission routes contributed more to viral dose in Scenario 1, our simulations demonstrate the ability of face masks worn by patients to additionally reduce surface transmission by reducing viral deposition on surfaces. Based on these simulations, we recommend the patient wear a face mask and first responders wear respirators, when possible, and disinfection should prioritize high use equipment.


Assuntos
COVID-19/transmissão , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Máscaras/virologia , Respiradores N95/virologia , SARS-CoV-2 , Aerossóis , Microbiologia do Ar , Ambulâncias , COVID-19/prevenção & controle , Simulação por Computador , Socorristas , Contaminação de Equipamentos , Humanos , Método de Monte Carlo , Dispositivos de Proteção Respiratória/virologia , Comportamento de Redução do Risco , Transporte de Pacientes
16.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038424

RESUMO

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , SARS-CoV-2/metabolismo , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
17.
J Occup Environ Hyg ; 17(1): 30-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855526

RESUMO

Viral infections are an occupational health concern for office workers and employers. The objectives of this study were to estimate rotavirus, rhinovirus, and influenza A virus infection risks in an office setting and quantify infection risk reductions for two hygiene interventions. In the first intervention, research staff used an ethanol-based spray disinfectant to clean high-touch non-porous surfaces in a shared office space. The second intervention included surface disinfection and also provided workers with alcohol-based hand sanitizer gel and hand sanitizing wipes to promote hand hygiene. Expected changes in surface concentrations due to these interventions were calculated. Human exposure and dose were simulated using a validated, steady-state model incorporated into a Monte Carlo framework. Stochastic inputs representing human behavior, pathogen transfer efficiency, and pathogen fate were utilized, in addition to a mixed distribution that accounted for surface concentrations above and below a limit of detection. Dose-response curves were then used to estimate infection risk. Estimates of percent risk reduction using mean values from baseline and surface disinfection simulations for rotavirus, rhinovirus, and influenza A infection risk were 14.5%, 16.1%, and 32.9%, respectively. For interventions with both surface disinfection and the promotion of personal hand hygiene, reductions based on mean values of infection risk were 58.9%, 60.8%, and 87.8%, respectively. This study demonstrated that surface disinfection and the use of personal hand hygiene products can help decrease virus infection risk in communal offices. Additionally, a variance-based sensitivity analysis revealed a greater relative importance of surface concentrations, assumptions of relevant exposure routes, and inputs representing human behavior in estimating risk reductions.


Assuntos
Doenças Profissionais/epidemiologia , Viroses/epidemiologia , Bacteriófagos , Humanos , Método de Monte Carlo , Doenças Profissionais/prevenção & controle , Doenças Profissionais/virologia , Probabilidade , Medição de Risco , Processos Estocásticos , Viroses/prevenção & controle , Viroses/transmissão , Local de Trabalho
18.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980557

RESUMO

Nosocomial viral infections are an important cause of health care-acquired infections where fomites have a role in transmission. Using stochastic modeling to quantify the effects of surface disinfection practices on nosocomial pathogen exposures and infection risk can inform cleaning practices. The purpose of this study was to predict the effect of surface disinfection on viral infection risks and to determine needed viral reductions to achieve risk targets. Rotavirus, rhinovirus, and influenza A virus infection risks for two cases were modeled. Case 1 utilized a single fomite contact approach, while case 2 assumed 6 h of contact activities. A 94.1% viral reduction on surfaces and hands was measured following a single cleaning round using an Environmental Protection Agency (EPA)-registered disinfectant in an urgent care facility. This value was used to model the effect of a surface disinfection intervention on infection risk. Risk reductions for other surface-cleaning efficacies were also simulated. Surface reductions required to achieve risk probability targets were estimated. Under case 1 conditions, a 94.1% reduction in virus surface concentration reduced infection risks by 94.1%. Under case 2 conditions, a 94.1% reduction on surfaces resulted in median viral infection risks being reduced by 92.96 to 94.1% and an influenza A virus infection risk below one in a million. Surface concentration in the equations was highly correlated with dose and infection risk outputs. For rotavirus and rhinovirus, a >99.99% viral surface reduction would be needed to achieve a one-in-a-million risk target. This study quantifies reductions of infection risk relative to surface disinfectant use and demonstrates that risk targets for low-infectious-dose organisms may be more challenging to achieve.IMPORTANCE It is known that the use of EPA-registered surface disinfectant sprays can reduce infection risk if used according to the manufacturer's instructions. However, there are currently no standards for health care environments related to contamination levels on surfaces. The significance of this research is in quantifying needed reductions to meet various risk targets using realistic viral concentrations on surfaces for health care environments. This research informs the design of cleaning protocols by demonstrating that multiple applications may be needed to reduce risk and by highlighting a need for more models exploring the relationship among microbial contamination of surfaces, patient and health care worker behaviors, and infection risks.


Assuntos
Infecção Hospitalar/prevenção & controle , Desinfetantes/uso terapêutico , Desinfecção/métodos , Fômites/virologia , Influenza Humana/prevenção & controle , Infecções por Picornaviridae/prevenção & controle , Infecções por Rotavirus/prevenção & controle , Infecção Hospitalar/virologia , Humanos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/virologia , Modelos Teóricos , Infecções por Picornaviridae/virologia , Rhinovirus/efeitos dos fármacos , Comportamento de Redução do Risco , Rotavirus/efeitos dos fármacos , Infecções por Rotavirus/virologia
19.
Mediators Inflamm ; 2017: 4594035, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29410598

RESUMO

Acute ischemia-reperfusion injury (IRI) of the extremities leads to local and systemic inflammatory changes which can hinder limb function and can be life threatening. This study examined whether the administration of the T-cell sequestration agent, FTY720, following hind limb tourniquet-induced skeletal muscle IRI in a rat model would attenuate systemic inflammation and multiple end organ injury. Sprague-Dawley rats were subjected to 1 hr of ischemia via application of a rubber band tourniquet. Animals were randomized to receive an intravenous bolus of either vehicle control or FTY720 15 min after band placement. Rats (n = 10/time point) were euthanized at 6, 24, and 72 hr post-IRI. Peripheral blood as well as lung, liver, kidney, and ischemic muscle tissue was analyzed and compared between groups. FTY720 treatment markedly decreased the number of peripheral blood T cells (p < 0.05) resulting in a decreased systemic inflammatory response and lower serum creatinine levels and had a modest but significant effect in decreasing the transcription of injury-associated target genes in multiple end organs. These findings suggest that early intervention with FTY720 may benefit the treatment of IRI of the limb. Further preclinical studies are necessary to characterize the short-term and long-term beneficial effects of FTY720 following tourniquet-induced IRI.


Assuntos
Extremidades/irrigação sanguínea , Cloridrato de Fingolimode/uso terapêutico , Inflamação/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/imunologia , Torniquetes
20.
Biochem J ; 470(3): 331-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26195823

RESUMO

Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca(2+) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.


Assuntos
Mucolipidoses/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Autofagia , Sítios de Ligação , Sinalização do Cálcio , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Células HEK293 , Humanos , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Mucolipidoses/genética , Mutagênese Sítio-Dirigida , Fosforilação , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa