RESUMO
Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.
Assuntos
Arsênio , Cobre , Elymus , Metabolômica , Micorrizas , Poluentes do Solo , Arsênio/metabolismo , Cobre/metabolismo , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Elymus/metabolismo , Elymus/efeitos dos fármacos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacosRESUMO
In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.
Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo , Solanum melongena , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Cádmio/toxicidade , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Fotossíntese/efeitos dos fármacos , Malondialdeído/metabolismoRESUMO
BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.
Assuntos
Irrigação Agrícola , Folhas de Planta , Ácido Salicílico , Solanum tuberosum , Águas Residuárias , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Folhas de Planta/efeitos dos fármacos , Irrigação Agrícola/métodos , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/anatomia & histologia , Antioxidantes/metabolismoRESUMO
The recent over production of municipal solid waste (MSW) poses a significant threat to both the ecosystem and human health. Utilizing MSW for agricultural purposes has emerged as a promising strategy to reduce solid waste disposal while simultaneously increasing soil fertility. To explore this potential solution further, an experiment was designed to assess the impact of varying concentrations of MSW (25%, 50%, and 75%) on the proximate composition of 15 different vegetable species. The experiment, conducted between 2018 and 2019, involved treating soil with different levels of solid waste and analyzing the proximate components, such as crude protein, dry matter, crude fiber, crude fat, and moisture content, in the 15 selected crops. The results indicate that the application of 25% MSW significantly increased the levels of crude protein, crude fiber, dry matter, and fat in Spinacia oleracea, Solanum tuberosum, Solanum melongena, and Abelmoschus esculentus. Conversely, the addition of 75% MSW notably elevated the moisture and ash content in Cucumis sativus. Correlation and scatter matrix analyses were conducted to elucidate the relationships between the protein, fiber, dry matter, ash, and fat contents. Principal component analysis and clustering confirmed the substantial impact of Treatment_1 (25% MSW) and Treatment_3 (75% MSW) on the proximate composition of the aforementioned vegetables, leading to their categorization into distinct groups. Our study highlights the efficacy of using 25% MSW to enhance the proximate composition and nutritional value of vegetables. Nonetheless, further research is warranted to investigate the mineral, antioxidant, vitamin, and heavy metal contents in the soil over an extended period of MSW application.
Assuntos
Fertilizantes , Resíduos Sólidos , Verduras , Verduras/química , Resíduos Sólidos/análise , Fertilizantes/análise , Humanos , Eliminação de Resíduos/métodos , Solo/química , Meio AmbienteRESUMO
Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquidâliquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.
Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/químicaRESUMO
This study explored the drought resistance mechanisms of different populations of Sporobolus ioclados (Poaceae), locally known as "Sawri," "Drabhri" and "Dhrbholi" native to Africa and the Indian Subcontinent. These populations were grown in conventional nursery practices at Khawaja Fareed Government College in Rahim Yar Khan, Pakistan, and subsequently subjected to four distinct levels of drought within carefully monitored experimental settings. The experiment was conducted in a two-factorial design involving populations and drought treatments and was repeated three times. The physiological and morphological responses of S. ioclados, including plant height, number of roots, root length, flag leaf area, stomatal features, proline concentration and nitrogen content, displayed significant variability in response to the imposed drought stress. Drought resulted in increases in proline concentration and nitrogen content. The number of roots decreased, while the length and width of the stomata increased in various populations. A combination of advanced statistical techniques, such as ANOVA, PCA, HCA, and DFA, provided a comprehensive understanding of the mechanism of plant adaptation and the extent of population diversity within the species. The Yazman and Nwab Wala populations exhibited the highest rates of photosynthesis and stomatal conductance, while S. ioclados demonstrated notable drought tolerance at the T4 level of drought stress. A negative correlation was found between proline levels, nitrogen contents, and photosynthesis, suggesting that proline has a protective role in drought. The diverse adaptation strategies indicated by S. ioclados populations have revealed the potential of this species for afforestation and climate change mitigation in dry environments.
Assuntos
Adaptação Fisiológica , Clima Desértico , Secas , Paquistão , Poaceae/fisiologia , Poaceae/crescimento & desenvolvimento , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Prolina/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estresse FisiológicoRESUMO
Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.
Assuntos
Citrus , Frutas , Doenças das Plantas , Folhas de Planta , Xanthomonas axonopodis , Citrus/microbiologia , Xanthomonas axonopodis/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Doenças das Plantas/microbiologia , Frutas/microbiologia , Minerais/metabolismo , Minerais/análise , Clorofila/metabolismo , PaquistãoRESUMO
Global warming is a leading environmental stress that reduces plant productivity worldwide. Several beneficial microorganisms reduce stress; however, the mechanism by which plant-microbe interactions occur and reduce stress remains to be fully elucidated. The aim of the present study was to elucidate the mutualistic interaction between the plant growth-promoting rhizobacterial strain SH-19 and soybeans of the Pungsannamul variety. The results showed that SH-19 possessed several plant growth-promoting traits, such as the production of indole-3-acetic acid, siderophore, and exopolysaccharide, and had the capacity for phosphate solubilisation. The heat tolerance assay showed that SH-19 could withstand temperatures up to 45 °C. The strain SH-19 was identified as P. megaterium using the 16S ribosomal DNA gene sequence technique. Inoculation of soybeans with SH-19 improved seedling characteristics under high-temperature stress. This may be due to an increase in the endogenous salicylic acid level and a decrease in the abscisic acid level compared with the negative control group. The strain of SH-19 increased the activity of the endogenous antioxidant defense system, resulting in the upregulation of GSH (44.8%), SOD (23.1%), APX (11%), and CAT (52.6%). Furthermore, this study involved the transcription factors GmHSP, GmbZIP1, and GmNCED3. The findings showed upregulation of the two transcription factors GmbZIP1 (17%), GmNCED3 (15%) involved in ABA biosynthesis and induced stomatal regulation, similarly, a downregulation of the expression pattern of GmHSP by 25% was observed. Overall, the results of this study indicate that the strain SH-19 promotes plant growth, reduces high-temperature stress, and improves physiological parameters by regulating endogenous phytohormones, the antioxidant defense system, and genetic expression. The isolated strain (SH-19) could be commercialized as a biofertilizer.
Assuntos
Glycine max , Glycine max/microbiologia , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Resposta ao Choque Térmico , Transdução de Sinais , Burkholderiales/genética , Burkholderiales/fisiologia , Burkholderiales/metabolismo , Metabolismo Secundário , Reguladores de Crescimento de Plantas/metabolismo , Simbiose , Ácido Salicílico/metabolismoRESUMO
Chemical fertilizers are the primary source of crop nutrition; however, their increasing rate of application has created environmental hazards, such as heavy metal toxicity and eutrophication. The synchronized use of chemical fertilizers and eco-friendly biological tools, such as microorganisms and biochar, may provide an efficient foundation to promote sustainable agriculture. Therefore, the current study aimed to optimize the nutrient uptake using an inorganic fertilizer, sulfate of potash (SOP) from the plant growth-promoting fungus Bipolaris maydis AF7, and biochar under heavy metal toxicity conditions in rice. Bioassay analysis showed that AF7 has high resistance to heavy metals and a tendency to produce gibberellin, colonize the fertilizer, and increase the intake of free amino acids. In the plant experiment, the co-application of AF7 +Biochar+MNF+SOP significantly lowered the heavy metal toxicity, enhanced the nutrient uptake in the rice shoots, and improved the morphological attributes (total biomass). Moreover, the co-application augmented the glucose and sucrose levels, whereas it significantly lowered the endogenous phytohormone levels (salicylic acid and jasmonic acid) in the rice shoots. The increase in nutrient content aligns with the higher expression of the OsLSi6, PHT1, and OsHKT1 genes. The plant growth traits and heavy metal tolerance of AF7 were validated by whole-genome sequencing that showed the presence of the heavy metal tolerance and detoxification protein, siderophore iron transporter, Gibberellin cluster GA4 desaturase, and DES_1 genes, as well as others that regulate glucose, antioxidants, and amino acids. Because the AF7 +biochar+inorganic fertilizer works synergistically, nutrient availability to the crops could be improved, and heavy metal toxicity and environmental hazards could be minimized.
Assuntos
Bipolaris , Metais Pesados , Oryza , Solo/química , Fertilizantes/análise , Oryza/genética , Giberelinas/farmacologia , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Metais Pesados/análise , Genômica , Fungos , Aminoácidos , GlucoseRESUMO
Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.
Assuntos
Bacillaceae , Resistência à Seca , Glycine max , Melatonina , Estresse Oxidativo , Reguladores de Crescimento de Plantas , Melatonina/farmacologia , Resistência à Seca/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/microbiologia , Polietilenoglicóis/farmacologia , Polissacarídeos Bacterianos/metabolismo , Sideróforos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.
Assuntos
Fertilizantes , Chumbo , Esterco , Verduras , Águas Residuárias , Fertilizantes/análise , Verduras/metabolismo , Verduras/química , Esterco/análise , Águas Residuárias/química , Águas Residuárias/análise , Chumbo/análise , Chumbo/metabolismo , Animais , Poluentes do Solo/análise , Solo/química , Bovinos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/química , Minerais/análiseRESUMO
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
RESUMO
The role of melatonin and plant growth-promoting rhizobacteria (PGPR) in enhancing abiotic stress tolerance has been widely investigated. However, the mechanism underlying the interaction between melatonin and PGPR in drought stress tolerance is poorly understood. In this study, we investigated the role of Bacillus sp. strain IPR-4 co-inoculated with melatonin (IPR-4/MET) to ameliorate drought stress response in soybean. Initially, 16 random isolates were selected from a previously pooled collection of isolates from soil at plant physiology lab, and were screesn for plant growth promoting (PGP) traits and their survival rate polyethylene glycol (PEG6000) (5%, 10%, and 15%). Among these isolate Bacillus sp. strain IPR-4 were selected on base of its significant PGP traits such as the survival rate gradient concentrations of PEG6000 (5%, 10%, and 15%) compared to other isolates, and produced high levels of indole-3-acetic acid and organic acids, coupled with exopolysaccharide, siderophores, and phosphate solubilization under drought stress. The Bacillus sp. strain IPR-4 were then validated using 16S rRNA sequencing. To further investigate the growth-promoting ability of the Bacillus sp. IPR-4 and its potential interaction with MET, the bacterial inoculum (40 mL of 4.5 × 10-8 cells/mL) was applied alone or in combination with MET to soybean plants for 5 days. Then, pre-inoculated soybean plants were subjected to drought stress conditions for 9 days by withholding water under greenhouse conditions. Furthermore, when IPR-4/MET was applied to plants subjected to drought stress, a significant increase in plant height (33.3%) and biomass (fresh weight) was observed. Similarly, total chlorophyll content increased by 37.1%, whereas the activity of peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase increased by 38.4%, 34.14%, 76.8%, 69.8%, and 31.6%, respectively. Moreover, the hydrogen peroxide content and malondialdehyde decreased by 37.3% and 30% in drought-stressed plants treated with IPR-4 and melatonin. Regarding the 2,2-diphenyl-1-picrylhydrazyl activity and total phenolic content, shows 38% and 49.6% increase, respectively. Likewise, Bacillus-melatonin-treated plants enhanced the uptake of magnesium, calcium, and potassium by 31.2%, 50.7%, and 30.5%, respectively. Under the same conditions, the salicylic acid content increased by 29.1%, whereas a decreasing abscisic acid content (25.5%) was observed. The expression levels of GmNCED3, GmDREB2, and GmbZIP1 were recorded as the lowest. However, Bacillus-melatonin-treated plants recorded the highest expression levels (upregulated) of GmCYP707A1 and GmCYP707A2, GmPAL2.1, and GmERD1 in response to drought stress. In a nutshell, these data confirm that Bacillus sp. IPR-4 and melatonin co-inoculation has the highest plant growth-promoting efficiency under both normal and drought stress conditions. Bacillus sp. IPR-4/melatonin is therefore proposed as an effective plant growth regulator that optimizes nutrient uptake, modulates redox homeostasis, and enhances drought tolerance in soybean plants.
RESUMO
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
RESUMO
Plants are adapted to defend themselves through programming, reprogramming, and stress tolerance against numerous environmental stresses, including heavy metal toxicity. Heavy metal stress is a kind of abiotic stress that continuously reduces various crops' productivity, including soybeans. Beneficial microbes play an essential role in improving plant productivity as well as mitigating abiotic stress. The simultaneous effect of abiotic stress from heavy metals on soybeans is rarely explored. Moreover, reducing metal contamination in soybean seeds through a sustainable approach is extremely needed. The present article describes the initiation of heavy metal tolerance mediated by plant inoculation with endophytes and plant growth-promoting rhizobacteria, the identification of plant transduction pathways via sensing annotation, and contemporary changes from molecular to genomics. The results suggest that the inoculation of beneficial microbes plays a significant role in rescuing soybeans under heavy metal stress. They create a dynamic, complex interaction with plants via a cascade called plant-microbial interaction. It enhances stress metal tolerance via the production of phytohormones, gene expression, and secondary metabolites. Overall, microbial inoculation is essential in mediating plant protection responses to heavy metal stress produced by a fluctuating climate.
RESUMO
Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions.
RESUMO
Salinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and their impact on the seed germination of Malva verticillata (mallow) and Brassica oleracea var. italica (broccoli) under salt stress. In this study, seven bacterial isolates (KW01, KW02, KW03, KW04, KW05, KW06, and KW07) were used to assess their capacity for producing various growth-promoting traits and their tolerance to varying amounts of salinity (100 mM and 150 Mm NaCl). The findings revealed that KW05 and KW07 isolates outperformed other isolates in synthesizing indole-3-acetic acid, siderophores, and exopolysaccharides and in solubilizing phosphates. These isolates also enhanced phosphatase activity and antioxidant levels, including superoxide dismutase and catalase. Both KW05 and KW07 isolate highlight the growth-promoting effects of gibberellin by enhancing of growth parameters of Waito-C rice. Further, gas chromatography-mass spectrometry validation confirmed the ability of KW05 and KW07 to produce gibberellins (GAs), including GA1, GA3, GA4, and GA7. Seed germination metrics were enhanced due to the inoculation of KW05 and KW07. Moreover, inoculation with KW05 increased the fresh weight (FW) (7.82%) and total length (38.61%) of mallow under salt stress. Inoculation with KW07 increased the FW (32.04%) and shoot length of mallow under salt stress. A single inoculation of these two isolates increased broccoli plants' FW and shoot length under salt stress. Gibberellin-producing bacteria helps in plant growth promotion by improving salt tolerance by stimulating root elongation and facilitating enhanced absorption of water and nutrient uptake in salty environments. Based on these findings, they can play a role in boosting agricultural yield in salt-affected areas, which would help to ensure the long-term viability of agriculture in coastal regions.
RESUMO
Maize is the third most common cereal crop worldwide, after rice and wheat, and plays a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable food production. Further, seed biopriming stimulates plant defense mechanisms. In this study, we isolated bacteria from the rhizosphere of Artemisia plants from Pohang beach, Daegu, South Korea. Twenty-three isolates were isolated and screened for growth promoting potential. Among them, bacterial isolate SH-6 was selected based on maximum induced tolerance to polyethylene glycol-simulated drought. SH-6 showed ABA concentration = 1.06 ± 0.04 ng/mL, phosphate solubilizing index = 3.7, and sucrose concentration = 0.51 ± 0.13 mg/mL. The novel isolate SH-6 markedly enhanced maize seedling tolerance to oxidative stress owing to the presence of superoxide dismutase, catalase, and ascorbate peroxidase activities in the culture media. Additionally, we quantified and standardized the biopriming effect of SH-6 on maize seeds. SH-6 significantly increased maize seedling drought tolerance by up to 20%, resulting in 80% germination potential. We concluded that the novel bacterium isolate SH-6 (gene accession number (OM757882) is a biostimulant that can improve germination performance under drought stress.
RESUMO
Bacterial adhesion potential constitutes the transition of bacteria from the planktonic to the static phase by promoting biofilm formation, which plays a significant role in plant-microbial interaction in the agriculture industry. In present study, the adhesion potential of five soil-borne bacterial strains belonging to different genera was studied. All bacterial strains were capable of forming colonies and biofilms of different levels of firmness on polystyrene. Significant variation was observed in hydrophobicity and motility assays. Among the five bacterial strains (SH-6, SH-8, SH-9, SH-10, and SH-19), SH-19 had a strong hydrophobic force, while SH-10 showed the most hydrophilic property. SH-6 showed great variability in motility; SH-8 had a swimming diffusion diameter of 70 mm, which was three times higher than that of SH-19. In the motility assay, SH-9 and SH-10 showed diffusion diameters of approximately 22 mm and 55 mm, respectively. Furthermore, among the five strains, four are predominately electron donors and one is electron acceptors. Overall, positive correlation was observed among Lewis acid base properties, hydrophobicity, and biofilm forming ability. However, no correlation of motility with bacterial adhesion could be found in present experimental work. Scanning electron microscopy images confirmed the adhesion potential and biofilm ability within extra polymeric substances. Research on the role of adhesion in biofilm formation of bacteria isolated from plants is potentially conducive for developing strategies such as plant-microbial interaction to mitigate the abiotic stress.
RESUMO
Plants defend themselves against ecological stresses including drought. Therefore, they adopt various strategies to cope with stress, such as seepage and drought tolerance mechanisms, which allow plant development under drought conditions. There is evidence that microbes play a role in plant drought tolerance. In this study, we presented a review of the literature describing the initiation of drought tolerance mediated by plant inoculation with fungi, bacteria, viruses, and several bacterial elements, as well as the plant transduction pathways identified via archetypal functional or morphological annotations and contemporary "omics" technologies. Overall, microbial associations play a potential role in mediating plant protection responses to drought, which is an important factor for agricultural manufacturing systems that are affected by fluctuating climate.