Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 545: 69-85, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38492797

RESUMO

Alzheimer's disease (AD) is the general form of dementia, leading to a progressive neurological disorder characterized by memory loss due to brain cell damage. Artificial Intelligence (AI) assists in the early identification and prediction of AD patients, determining future risks and benefits for radiologists and doctors to save time and cost. Since deep learning (DL) approaches work well with massive datasets and have recently become helpful for AD detection, there remains an area for improvement in automating detection performance. Present approaches somehow addressed the challenges of limited annotated data samples for binary classification. This contrasts with prior state-of-the-art techniques, which were constrained by their incapacity to capture abstract-level information. In this paper, we proposed a Siamese 4D-AlzNet model comprised of four parallel convolutional neural network (CNN) streams (Five CNN layer blocks) and customized transfer learning models (Frozen VGG-19, Frozen VGG-16, and customized AlexNet). Siamese 4D-AlzNet was vertically and horizontally stored, and the spatial features were passed to the final layer for classification. For experiments, T1-weighted MRI images comprised of four distinct subject classes, normal control (NC), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI), and AD, have been employed. Our proposed models achieved outstanding accuracy, with a remarkable 95.05% accuracy distinguishing between normal and AD subjects. The performance across remaining binary class pairs consistently exceeded 90%. We thoroughly compared our model with the latest methods using the same dataset as our reference. Our proposed model improved NC-AD and MCI-AD classification accuracy by 2% 7%.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Redes Neurais de Computação , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Humanos , Imageamento por Ressonância Magnética/métodos , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Masculino
2.
Brain Res ; 1840: 149021, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810771

RESUMO

Alzheimer's is a progressive neurodegenerative disorder that leads to cognitive impairment and ultimately death. To select the most effective treatment options, it is crucial to diagnose and classify the disease early, as current treatments can only delay its progression. However, previous research on Alzheimer's disease (AD) has had limitations, such as inaccuracies and reliance on a small, unbalanced binary dataset. In this study, we aimed to evaluate the early stages of AD using three multiclass datasets: OASIS, EEG, and ADNI MRI. The research consisted of three phases: pre-processing, feature extraction, and classification using hybrid learning techniques. For the OASIS and ADNI MRI datasets, we computed the mean RGB value and used an averaging filter to enhance the images. We balanced and augmented the dataset to increase its size. In the case of the EEG dataset, we applied a band-pass filter for digital filtering to reduce noise and also balanced the dataset using random oversampling. To extract and classify features, we utilized a hybrid technique consisting of four algorithms: AlexNet-MLP, AlexNet-ETC, AlexNet-AdaBoost, and AlexNet-NB. The results showed that the AlexNet-ETC hybrid algorithm achieved the highest accuracy rate of 95.32% for the OASIS dataset. In the case of the EEG dataset, the AlexNet-MLP hybrid algorithm outperformed other approaches with the highest accuracy of 97.71%. For the ADNI MRI dataset, the AlexNet-MLP hybrid algorithm achieved an accuracy rate of 92.59%. Comparing these results with the current state of the art demonstrates the effectiveness of our findings.


Assuntos
Doença de Alzheimer , Diagnóstico Precoce , Eletroencefalografia , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Idoso , Feminino , Eletroencefalografia/métodos , Masculino , Algoritmos , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa