Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 21(1): 37, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317249

RESUMO

BACKGROUND: To stop the spread of the COVID-19 disease, it is crucial to create molecular tools to investigate and diagnose COVID-19. Current efforts focus on developing specific neutralizing monoclonal antibodies (NmAbs) elicited against the receptor-binding domain (RBD). METHODS: In the present study, recombinant RBD (rRBD) protein was produced in E. coli, followed by immunizing mice with purified rRBD. ELISA was applied to screen the hybridomas for positive reactivity with rRBD protein. The linear and conformational epitopes of the mAbs were subsequently identified using western blot. Finally, the reactivity, affinity, and neutralization activity of the purified mAbs were evaluated using ELISA. RESULTS: All mAbs exhibited similar reactivity trends towards both eukaryotic RBD and prokaryotic rRBD in ELISA. Among them, 2E7-D2 and 2B4-G8 mAbs demonstrated higher reactivity than other mAbs. Additionally, in western blot assays, these two mAbs could detect reducing and non-reducing rRBD, indicating recognition of linear epitopes. Notably, five mAbs effectively blocked rRBD- angiotensin-converting enzyme 2 (ACE2) interaction, while two high-affinity mAbs exhibited potent neutralizing activity against eukaryotic RBD. CONCLUSION: In the current study, we generated and characterized new RBD-specific mAbs using the hybridoma technique that recognized linear and conformational epitopes in RBD with neutralization potency. Our mAbs are novel candidates for diagnosing and treating SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Epitopos , Anticorpos Antivirais , Escherichia coli/metabolismo , COVID-19/diagnóstico , Anticorpos Neutralizantes , Anticorpos Monoclonais , Glicoproteína da Espícula de Coronavírus/química
2.
Bioorg Chem ; 153: 107803, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39270526

RESUMO

Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer. The present study aims to completely review clinical- and preclinical-stage PSMA-directed ADCs.

3.
Mol Ther ; 31(7): 1874-1903, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950736

RESUMO

Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer. The purpose of this review is to provide an insight into the ADC field in cancer treatment and present a comprehensive overview of ADCs approved or under clinical investigation for the treatment of HER2-positive breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Antineoplásicos/uso terapêutico , Ado-Trastuzumab Emtansina/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico
4.
J Cell Biochem ; 123(2): 450-468, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825407

RESUMO

Exploiting human mesenchymal stem cells (hMSCs) was proposed as a promising therapeutic approach for cardiovascular disease due to their capacity to differentiate into cardiac cells. Though modulation of the intracellular signaling pathways dominantly WNT/ß catenin and transforming growth factor-ß (TGF-ß) have been reported to promote differentiation of hMSCs into cardiomyocytes in the prevailing literature, a safe and reproducible system for their clinical application has not yet turned into reality. In the present study, the molecular docking-based strategy was first applied for evaluating the potency of some natural phenolic compounds in the modulation of Wnt and TGF-ß signaling pathways using a vital class of crystallographic protein structures of WNT signaling regulators such as Frizzled, Disheveled, GSK3-ß, ß-catenin, LRP 5/6 extracellular domain, Tankyrase and their variety of active pockets. Then, the impacts of plant-derived chemical compounds on the regulation of the relevant signals for the differentiation of hMSCs into the definitive mesoderm lineage and cardiac progenitors were assessed in vitro. Data obtained revealed the synergistic activity of Wnt and TGF-ß superfamily to direct cardiac differentiation in human cardiogenesis by comparing cardiac gene expression in the presence and absence of the TGF-ß inhibitors. We found that the inhibitory effect of canonical Wnt/ß-catenin is sufficient to cause proper cardiomyocyte differentiation, but the TGF-ß pathway plays a vital role in enhancing the expression of the cardiomyocyte-specific marker (cTnT). It was found that quercetin, a p38MAPK inhibitor with the high energy dock to the active pocket of Wnt receptors, promotes cardiac differentiation via the inhibition of both Wnt and non-Smad TGF-ß pathways. Altogether, data presented here can contribute to the development of a feasible and efficient cardiac differentiation protocol as an "off-the-shelf" therapeutic source using novel natural agents for cardiac repair or regeneration.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Quercetina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular , Humanos
5.
J Cell Physiol ; 236(7): 5306-5316, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33377240

RESUMO

Herbal-derived three-dimensional scaffolds have a unique structure that represents the natural cellular microenvironment and can be potentially used for tissue engineering applications. In the present study, cabbage (Cb) leaves were decellularized and then their characteristics, such as surface roughness, wettability, porosity, mechanical properties, and specific surface area, were investigated. After that, scaffold osteoinductivity was studied by bone-marrow-derived mesenchymal stem cells (BM-MSCs) osteogenic differentiation while growing on the decellularized Cb leaves. Cells mineralization, calcium secretion, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were determined during the differentiation process. Our results from the structural characterization of the scaffolds demonstrated that decellularized Cb leaves are good candidates for bone differentiation in terms of surface roughness, mechanical properties, and interconnected pores. Osteogenic differentiation evaluation of the BM-MSCs determined that the cell's ALP activity and mineralization were increased significantly while cultured on the decellularized Cb leaves compared to the cells cultured on the culture plate as a control. Besides, Runx2, ALP, collagen-1 (Col-I), and osteocalcin genes were expressed in cells cultured on decellularized Cb leaves significantly higher than cells cultured on the culture plate. Based on these results, it can be concluded that the decellularized Cb scaffold has great potential for promoting BM-MSCs proliferation and osteogenic differentiation.


Assuntos
Células da Medula Óssea , Brassica , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Diferenciação Celular , Celulose , Humanos , Osteogênese/fisiologia
6.
J Mater Sci Mater Med ; 30(1): 7, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594964

RESUMO

Strategies based on growth factor (GF) delivery have attracted considerable attention in tissue engineering applications. Among different GFs, transforming growth factor beta 1 (TGF-ß1) is considered to be a potent factor for inducing chondrogenesis. In the present study, an expression cassette encoding the TGF-ß1 protein was prepared and transfected into the SP2/0-Ag14 cell line. The confocal microscopy of the transfected cells was performed to confirm the correct transfection process. The expression and in vitro release kinetics of the recombinant TGF-ß1 were assessed by western blot analysis and ELISA, respectively. Moreover, the biological activity of the expressed protein was compared with that of a commercially available product. The chondrogenic effects of the sustained release of the recombinant TGF-ß1 in an in vitro co-culture system were evaluated using a migration assay and real-time PCR. Results of confocal microscopy confirmed the successful transfection of the vector-encoding TGF-ß1 protein into the SP2/0-Ag14 cells. The bioactivity of the produced protein was in the range of the commercial product. The sustained release of the TGF-ß1 protein via SP2/0-Ag14 cells encapsulated in hydrogels encouraged the migration of adipose-derived MSCs. In addition, the expression analysis of chondrogenesis-related genes revealed that the pretreatment of encapsulated Ad-MSCs cells in alginate sulfate hydrogels through their exposure to the sustained release of TGF-ß1 is an efficient approach before transplantation of cells into the body.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Alginatos/química , Animais , Linhagem Celular , Células-Tronco Mesenquimais/fisiologia , Camundongos , Fator de Crescimento Transformador beta1/genética
7.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573413

RESUMO

Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.

8.
AMB Express ; 14(1): 53, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722404

RESUMO

Using herpes simplex virus type 1 (HSV-1) as a therapeutic tool has recently emerged as a promising strategy for enhancing the treatment of various cancers, particularly those associated with the nervous system, which is the virus's natural site of infection. These viruses are specifically engineered to infect and eradicate tumor cells while leaving healthy cells unharmed. To introduce targeted mutations in specific viral genes, gene-modification techniques such as shuttle vector homologous recombination are commonly employed. Plaque purification is then utilized to select and purify the recombinant virus from the parental viruses. However, plaque purification becomes problematic when the insertion of the desired gene at the target site hampers progeny virus replication, resulting in a lower titer of cell-released virus than the parental virus. This necessitates a laborious initial screening process using approximately 10-15 tissue culture dishes (10 cm), making plaque purification time-consuming and demanding. Although the recently developed CRISPR-Cas9 system significantly enhances the efficiency of homologous integration and editing precision in viral genes, the purification of recombinant variants remains a tedious task. In this study, we propose a rapid and innovative method that employs non-permissive Chinese hamster ovary (CHO) cells, representing a remarkable improvement over the aforementioned arduous process. With this approach, only 1-2 rounds of plaque purification are required. Our proposed protocol demonstrates great potential as a viable alternative to current methods for isolating and purifying recombinant HSV-1 variants expressing fluorescent reporter genes using CHO cells and plaque assays.

9.
Mar Life Sci Technol ; 6(3): 515-534, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39219680

RESUMO

This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.

10.
Int J Biol Macromol ; : 136303, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370065

RESUMO

Considering global surge in bone fracture prevalence, limitation in use of traditional healing approaches like bone grafts highlights the need for innovative regenerative strategies. Here, a novel green fabrication approach has reported for reinforcement of physicochemical performances of sustainable bioinspired extracellular matrix (ECM) based on decellularized pumpkin tissue coated with Magnesium oxide nanoparticles (hereafter called DM-Pumpkin) for enhanced bone regeneration. Compared to uncoated scaffold, DM-Pumpkin exhibited significantly improved surface roughness, mechanical stiffness, porosity, hydrophilicity, swelling, and biodegradation rate. Obtained nanoporous structure provides an ideal three-dimensional microenvironment for the attachment, migration and osteo-induction in human adipose-derived mesenchymal stem cells (h- AdMSCs). Calcium deposition and mineralization, alkaline phosphatase activity, and SEM imaging of the cells as well as increased expression of bone-related genes after 21 days incubation confirmed capability of DM-Pumpkin in mimicking the biological properties of bone tissue. The presence of MgONPs had a silencing effect on inflammatory factors and improved wound closure, verified by in vivo studies. Increased expression of collagen type I and osteocalcin in the h- AdMSCs cultured on DM-Pumpkin compared to control further corroborated gained results. Altogether, boosting physicochemical and biological properties of DM-Pumpkin due to surface modification is a promising approach for guided bone regeneration.

11.
Int J Biol Macromol ; 258(Pt 2): 129155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171440

RESUMO

Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.


Assuntos
Baratas , Osteogênese , Animais , Humanos , Alicerces Teciduais/química , Quercetina/farmacologia , Quitina/farmacologia , Staphylococcus aureus , Engenharia Tecidual/métodos , Regeneração Óssea , Diferenciação Celular
12.
Life Sci ; 352: 122910, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002610

RESUMO

Nectin-4 (Nectin cell adhesion molecule 4), a type I transmembrane cell adhesion protein, was demonstrated to be overexpressed in a variety of tumors, making it an attractive antigen for targeted therapies such as antibody-drug conjugates (ADCs). Of great note, the US Food and Drug Administration (FDA)-approval of the first Nectin-4-directed ADC, enfortumab vedotin (EV), in urothelial cancer (UC) not only introduced Nectin-4 as a clinically validated and reliable target antigen but also confirmed the evolving role of Nectin-4-directed ADCs as novel and promising cancer therapeutics. In addition to EV, there have been or are currently being seven and eleven Nectin-4-directed ADCs, respectively, in various stages of clinical trials and preclinical development, offering a promising future for the treatment of Nectin-4-positive cancer patients. This study reviewed clinical- and preclinical-stage Nectin-4-directed ADCs.


Assuntos
Moléculas de Adesão Celular , Imunoconjugados , Humanos , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Nectinas
13.
PLoS One ; 18(10): e0286231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862369

RESUMO

Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs. Here, the UL39 gene of the ICP34.5 deleted HSV-1 was manipulated with the insertion of the EGFP-p53 expression cassette utilizing CRISPR/ Cas9 editing approach to enhance oncoselectivity and oncotoxicity capabilities. The ΔUL39/Δγ34.5/HSV1-p53 mutant was isolated using the chorioallantoic membrane (CAM) of fertilized chicken eggs as a complementing membrane to support the growth of the viruses with gene deficiencies. Comparing phenotypic features of ΔUL39/Δγ34.5/HSV1-p53-infected cells with the parent Δγ34.5/HSV-1 in vitro revealed that HSV-1-P53 had cytolytic ability in various cell lines from different origin with different p53 expression rates. Altogether, data presented here illustrate the feasibility of exploiting CAM model as a promising strategy for isolating recombinant viruses such as CRISPR/Cas9 mediated HSV-1-P53 mutant with less virus replication in cell lines due to increased cell mortality induced by exogenous p53.


Assuntos
Herpesvirus Humano 1 , Neoplasias , Vírus Oncolíticos , Animais , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Sistemas CRISPR-Cas , Galinhas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Membrana Corioalantoide/metabolismo , Neoplasias/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
14.
Front Bioeng Biotechnol ; 11: 1189726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251569

RESUMO

Liver cancer is now one of the main causes leading to death worldwide. To achieve reliable therapeutic effects, it is crucial to develop efficient approaches to test novel anticancer drugs. Considering the significant contribution of tumor microenvironment to cell's response to medications, in vitro 3D bioinspiration of cancer cell niches can be regarded as an advanced strategy to improve the accuracy and reliability of the drug-based treatment. In this regard, decellularized plant tissues can perform as suitable 3D scaffolds for mammalian cell culture to create a near-to-real condition to test drug efficacy. Here, we developed a novel 3D natural scaffold made from decellularized tomato hairy leaves (hereafter called as DTL) to mimic the microenvironment of human hepatocellular carcinoma (HCC) for pharmaceutical purposes. The surface hydrophilicity, mechanical properties, and topography measurement and molecular analyses revealed that the 3D DTL scaffold is an ideal candidate for liver cancer modeling. The cells exhibited a higher growth and proliferation rate within the DTL scaffold, as verified by quantifying the expression of related genes, DAPI staining, and SEM imaging of the cells. Moreover, prilocaine, an anticancer drug, showed a higher effectiveness against the cancer cells cultured on the 3D DTL scaffold, compared to a 2D platform. Taken together, this new cellulosic 3D scaffold can be confidently proposed for chemotherapeutic testing of drugs on hepatocellular carcinoma.

15.
Phytomedicine ; 111: 154648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681052

RESUMO

BACKGROUND: The high number of mutations and consequent structure modifications in a Receptor-Binding Domain (RBD) of the spike protein of the Omicron variant of SARS-CoV-2 increased concerns about evading neutralization by antibodies induced by previous infection or vaccination. Thus, developing novel drugs with potent inhibitory activity can be considered an alternative for treating this highly transmissible variant. Considering that Urtica dioica agglutinin (UDA) displays antiviral activity against SARS-CoV-2, the potency of this lectin to inhibit the Receptor Binding Domain of the Omicron variant (RBDOmic) was examined in this study. PURPOSE: This study examines how UDA inhibits the Omicron variant of SARS-CoV-2 by blocking its RBD, using a combination of in silico and experimental methods. METHODS: To investigate the interaction between UDA and RBDOmic, the CLUSPRO 2.0 web server was used to dock the RBDOmic-UDA complex, and molecular dynamics simulations were performed by the Gromacs 2020.2 software to confirm the stability of the selected docked complex. Finally, the binding affinity (ΔG) of the simulation was calculated using MM-PBSA. In addition, ELISA and Western blot tests were used to examine UDA's binding to RBDOmic. RESULTS: Based on the docking results, UDA forms five hydrogen bonds with the RBDOmic active site, which contains mutated residues Tyr501, Arg498, Arg493, and His505. According to MD simulations, the UDA-RBDOmic complex is stable over 100 ns, and its average binding energy during the simulation is -87.201 kJ/mol. Also, the ELISA test showed that UDA significantly binds to RBDOmic, and by increasing the concentration of UDA protein, the attachment to RBDOmic became stronger. In Western blotting, RBDOmic was able to attach to and detect UDA. CONCLUSION: This study indicates that UDA interaction with RBDOmic prevents virus attachment to Angiotensin-converting enzyme 2 (ACE2) and, therefore, its entry into the host cell. Altogether, UDA exhibited a significant suppression effect on the Omicron variant and can be considered a new candidate to improve protection against severe infection of this variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Mutação
16.
Iran J Biotechnol ; 21(2): e3388, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37228627

RESUMO

Background: Despite recent advances in recombinant biotherapeutics production using CHO cells, their productivity remains lower than industrial needs, mainly due to apoptosis. Objectives: Present study aimed to exploit CRISPR/Cas9 technology to specifically disrupt the BAX gene to attenuate apoptosis in recombinant Chinese hamster's ovary cells producing erythropoietin. Materials and Methods: The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 technique. The single guide RNAs (sgRNAs) targeting identified gene (BAX) were designed, and CHO cells were then transfected with vectors. Afterward, changes in the expression of the Bax gene and consequent production rates of erythropoietin were investigated in manipulated cells, even in the presence of an apoptosis inducer agent, oleuropein. Results: BAX disruption significantly prolonged cell viability and increased proliferation rate in manipulated clones (152%, P-value = 0.0002). This strategy reduced the levels of Bax protein expression in manipulated cells by more than 4.3-fold (P-value <0.0001). The Bax-8 manipulated cells displayed higher threshold tolerance to the stress and consequence apoptosis compared to the control group. Also, they exhibited a higher IC50 compared to the control in the presence of oleuropein (5095 µM.ml-1 Vs. 2505 µM.ml-1). We found a significant increase in recombinant protein production levels in manipulated cells, even in the presence of 1,000 µM oleuropein compared to the control cell line (p-value=0.0002). Conclusions: CRISPR/Cas9 assisted BAX gene ablation is promising to improve erythropoietin production in CHO cells via engineering anti-apoptotic genes. Therefore, exploiting genome editing tools such as CRISPR/Cas9 has been proposed to develop host cells that result in a safe, feasible, and robust manufacturing operation with a yield that meets the industrial requirements.

17.
Int J Biol Macromol ; 242(Pt 2): 124857, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187421

RESUMO

Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.


Assuntos
Osteogênese , Phoeniceae , Humanos , Alicerces Teciduais/química , Antioxidantes/farmacologia , Regeneração Óssea , Engenharia Tecidual , Diferenciação Celular , Celulose/farmacologia , Proliferação de Células
18.
AMB Express ; 12(1): 23, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220506

RESUMO

Despite various efforts to produce potent recombinant bio-adhesive proteins for medical purposes, efficient production of a safe and feasible bio-glue is not yet a commercial reality due to the weak properties or low expression levels. Here, a feasible expression system has been developed to produce strong recombinant fusion bioinspired protein using mussel foot protein 3 and 5 (Mfps) along with gas vesicle protein A (GvpA) of Anabaena flos-aquae, and a curli protein CsgA from E. coli, expressed under the control of alcohol oxidase (AOX1) promoter for high-level production in yeast P. pastoris using pPICZα vector. Purified chimeric proteins were first evaluated using western blotting, and their remaining dihydroxyphenylalanine (DOPA) was measured in the modified proteins by NBT assay. We further elucidated the mechanistic properties of obtained adhesive protein assembly in various pH levels based on its different subunits using atomic force microscopy (AFM) when adsorbed onto the mica surface. We found that both combinational structural features of subunits and post-translational changes during expression in yeast host have led to potent adherence due to higher DOPA residues specially in acidic condition and tetrad complex which is higher than that of earlier reports in prokaryotic systems. We believe that our obtained chimeric protein resulted from the fusion of GvpA and CsgA proteins with DOPA-containing Mfp proteins, expressed in the methylotrophic yeast, P. pastoris, not only presents a candidate for future biomedical applications but also provides novel biological clues used for high-performance bioinspired biomaterial designation.

19.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458282

RESUMO

In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.

20.
AMB Express ; 12(1): 94, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838851

RESUMO

Recombinant production of mussel foot proteins among marine-inspired proteinaceous adhesive materials has been attracted high attention for medical applications, due to their exceptional versatility potential of hierarchically arranged nanostructures. Various biochemical and proteinous factors such as amyloid CsgA curli protein have been used as a synergistic factor to enhance the constancy of obtained bio-adhesion but their mechanistic interactions have not yet been deeply investigated widely in different pH conditions. To this end, the present study has first sought to assess molecular simulation and prediction by using RosettaFold to predict the 3-dimensional structure of the fused CsgA subunit and the MFP3 protein followed by in vitro verification. It was developed an ensemble of quantitative structure-activity relationship models relying on simulations according to the surface area and molecular weight values of the fused proteins in acidic to basic situations using PlayMolecule (protein preparation app for MD simulations) online databases followed by molecular dynamic simulation at different pHs. It was found that acidic conditions positively affect adhesive strength throughout the chimeric structure based on comparative structure-based analyses along with those obtained in prevailing literature. Atomic force microscopy analysis was confirmed obtained in silico data which showed enhanced adhesive properties of fused protein after self-assembly in low pH conditions. In conclusion, the augmented model for reactivity predictions not only unravels the performance and explain ability of the adhesive proteins but in turn paves the way for the decision-making process for chimeric subunits modifications needed for future industrial production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa