Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Infect Dis Model ; 9(2): 387-396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385018

RESUMO

At the end of the year 2019, a virus named SARS-CoV-2 induced the coronavirus disease, which is very contagious and quickly spread around the world. This new infectious disease is called COVID-19. Numerous areas, such as the economy, social services, education, and healthcare system, have suffered grave consequences from the invasion of this deadly virus. Thus, a thorough understanding of the spread of COVID-19 is required in order to deal with this outbreak before it becomes an infectious disaster. In this research, the daily reported COVID-19 cases in 92 sub-districts in Johor state, Malaysia, as well as the population size associated to each sub-district, are used to study the propagation of COVID-19 disease across space and time in Johor. The time frame of this research is about 190 days, which started from August 5, 2021, until February 10, 2022. The clustering technique known as spatio-temporal clustering, which considers the spatio-temporal metric was adapted to determine the hot-spot areas of the COVID-19 disease in Johor at the sub-district level. The results indicated that COVID-19 disease does spike in the dynamic populated sub-districts such as the state's economic centre (Bandar Johor Bahru), and during the festive season. These findings empirically prove that the transmission rate of COVID-19 is directly proportional to human mobility and the presence of holidays. On the other hand, the result of this study will help the authority in charge in stopping and preventing COVID-19 from spreading and become worsen at the national level.

3.
Front Cardiovasc Med ; 10: 1277041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250029

RESUMO

Hypertrophic cardiomyopathy is the most common genetic cardiac disorder and is defined by the presence of left ventricular (LV) hypertrophy in the absence of a condition capable of producing such a magnitude of hypertrophy. Over the past decade, guidelines on the screening, diagnostic, and management protocols of pediatric primary (i.e., sarcomeric) HCM have undergone significant revisions. Important revisions include changes to the appropriate screening age, the role of cardiac MRI (CMR) in HCM diagnosis, and the introduction of individualized pediatric SCD risk assessment models like HCM Risk-kids and PRIMaCY. This review explores open uncertainties in pediatric HCM that merit further attention, such as the divergent American and European recommendations on CMR use in HCM screening and diagnosis, the need for incorporating key genetic and imaging parameters into HCM-Risk Kids and PRIMaCY, the best method of quantifying myocardial fibrosis and its prognostic utility in SCD prediction for pediatric HCM, devising appropriate genotype- and phenotype-based exercise recommendations, and use of heart failure medications that can reverse cardiac remodeling in pediatric HCM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa