Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Recognit ; 37(1): e3067, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956676

RESUMO

Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases/química , Inibidores de Proteínas Quinases/química
2.
J Cell Biochem ; 124(1): 156-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502526

RESUMO

Glycation of proteins leading to the formation of advanced glycation end products (AGEs) has been demonstrated to contribute to the pathogenesis of several diseases. Irisin is a clinically significant protein, putatively involved in obesity, diabetes, and neurological disorders. This study aimed to monitor the methyl-glyoxal (MG) induced AGEs and aggregate formation of irisin, as a function of time, employing multispectroscopic and microscopic approaches. ANS fluorescence suggested a molten globule-like state on Day 6, followed by the formation of irisin AGEs adducts, as confirmed by AGE-specific fluorescence. Glycation of irisin led to aggregate formation, which was characterized by Thioflavin T fluorescence, CD spectroscopy, and microscopic studies. These aggregates were confirmed by exploiting fluorescence microscopy, confocal, and transmission electron microscopy. Molecular docking was performed to determine the crucial residues of irisin involved in irisin-MG interaction. Usually, MG is present in trace amounts as a metabolic by-product in the body, which is found to be elevated in diseased conditions viz. diabetes and Alzheimer's disease. This study characterized the AGEs and aggregates of clinically important protein, irisin; and since MG level has been found to be increased in various pathological conditions, this study provides a clinical perspective. There is a possibility that elevated MG concentrations might glycate irisin resulting in reduced irisin levels as reported in pathological conditions. However, further investigations are required to prove it.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Fibronectinas , Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Aldeído Pirúvico/farmacologia
3.
Amino Acids ; 55(12): 1923-1935, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926707

RESUMO

Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.


Assuntos
Doença de Alzheimer , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Transferrina , Simulação de Acoplamento Molecular , Polifenóis , Ferro/metabolismo
4.
Mol Divers ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728805

RESUMO

ß-secretase 1 (BACE1) is an enzyme that is involved in generating beta-amyloid peptides and is believed to have a significant role in the development of Alzheimer's disease (AD). Therefore, BACE1 has gained attention as a potential therapeutic target for treating AD. Modern drug discovery studies are being conducted to identify potential inhibitors of BACE1, with the goal of reducing the production of beta-amyloid peptides and, thus, slowing the progression of AD. Here, we used a multistep virtual screening methodology to identify phytoconstituents from the IMPPAT library that could inhibit the activity of BACE1. Molecular docking was employed to select initial hits based on their binding affinity toward BACE1. Screening for PAINS patterns, ADMET and PASS properties, was then used to identify potential molecules for BACE1 inhibition. In the end, we discovered two natural compounds, Peiminine and 27-Deoxywithaferin A, which demonstrated a strong affinity, effectiveness, and specific interactions for the BACE1-active site. The elucidated molecules also displayed drug likeliness. A 200 ns molecular dynamics (MD) simulation was conducted to investigate the interaction mechanism, complex stability, and conformational dynamics of BACE1 with Peiminine and 27-Deoxywithaferin A. The MD simulations demonstrated that BACE1 was stable during the simulation with Peiminine and 27-Deoxywithaferin A. Overall, the results suggested that Peiminine and 27-Deoxywithaferin A hold significant potential as scaffolds in drug development efforts targeting BACE1 for the purpose of treating AD.

6.
J Cell Biochem ; 123(8): 1381-1393, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35722728

RESUMO

Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.


Assuntos
Doença de Alzheimer , Transferrina , Doença de Alzheimer/tratamento farmacológico , Benzoquinonas , Humanos , Ferro/metabolismo , Simulação de Acoplamento Molecular , Transferrina/química , Transferrina/metabolismo
7.
J Cell Biochem ; 123(2): 359-374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34751461

RESUMO

Identifying novel molecules as potential kinase inhibitors are gaining significant attention globally. The present study suggests Myricetin as a potential inhibitor of microtubule-affinity regulating kinase (MARK4), adding another molecule to the existing list of anticancer therapeutics. MARK4 regulates initial cell division steps and is a potent druggable target for various cancers. Structure-based docking with 100 ns molecular dynamics simulation depicted activity of Myricetin in the active site pocket of MARK4 and the formation of a stable complex. The fluorescence-based assay showed excellent affinity of Myricetin to MARK4 guided by static and dynamic quenching. Moreover, the assessment of enthalpy change (∆H) and entropy change (∆S) delineated electrostatic interactions as a dominant force in the MARK4-myricetin interaction. Isothermal titration calorimetric measurements revealed spontaneous binding of Myricetin with MARK4. Further, the kinase assay depicted significant inhibition of MARK4 by Myricetin with IC50 = 3.11 µM. Additionally, cell proliferation studies established that Myricetin significantly inhibited the cancer cells (MCF-7 and A549) proliferation, and inducing apoptosis. This study provides a solid rationale for developing Myricetin as a promising anticancer molecule in the MARK4 mediated malignancies.


Assuntos
Neoplasias da Mama , Flavonoides , Neoplasias Pulmonares , Proteínas de Neoplasias , Células A549 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Feminino , Flavonoides/química , Flavonoides/farmacologia , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo
8.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682643

RESUMO

The prevalence of Alzheimer's disease (AD) has been a major health concern for a long time. Despite recent progress, there is still a strong need to develop effective disease-modifying therapies. Several drugs have already been approved to retard the progression of AD-related symptoms; however, there is a need to develop an effective carrier system for the delivery of drugs to combat such diseases. In recent years, various biological macromolecules, including proteins, have been used as carriers for drug delivery. Irisin is a beneficial hormone in such diseases, including AD and related pathologies. Herein, the interaction mechanism of irisin with AD drugs such as memantine, galantamine, and fluoxetine is investigated. Fluorescence studies revealed that the above drugs bind to irisin with significant affinity, with fluoxetine having the highest binding affinity. Isothermal titration calorimetry (ITC) complemented the spontaneous binding of these drugs with irisin, delineating various associated thermodynamic and binding parameters. Molecular docking further validated the fluorescence and ITC results and unfolded the mechanism that hydrogen bonding governs the binding of fluoxetine to irisin with a significant binding score, i.e., -6.3 kcal/mol. We believe that these findings provide a promising solution to fight against AD as well as a platform for further research to utilize irisin in the drug-delivery system for an effective therapeutic strategy.


Assuntos
Doença de Alzheimer , Fibronectinas , Doença de Alzheimer/tratamento farmacológico , Sítios de Ligação , Calorimetria/métodos , Fluoxetina , Humanos , Simulação de Acoplamento Molecular , Preparações Farmacêuticas , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
9.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361954

RESUMO

Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.


Assuntos
Ativadores de Enzimas , Isoflavonas , Neoplasias , Piruvato Quinase , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piruvato Quinase/metabolismo
10.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164061

RESUMO

Human serum albumin (HSA) is the most abundant protein in plasma synthesized by the liver and the main modulator of fluid distribution between body compartments. It has an amazing capacity to bind with multiple ligands, offering a store and transporter for various endogenous and exogenous compounds. Huperzine A (HpzA) is a natural sesquiterpene alkaloid found in Huperzia serrata and used in various neurological conditions, including Alzheimer's disease (AD). This study elucidated the binding of HpzA with HSA using advanced computational approaches such as molecular docking and molecular dynamic (MD) simulation followed by fluorescence-based binding assays. The molecular docking result showed plausible interaction between HpzA and HSA. The MD simulation and principal component analysis (PCA) results supported the stable interactions of the protein-ligand complex. The fluorescence assay further validated the in silico study, revealing significant binding affinity between HpzA and HSA. This study advocated that HpzA acts as a latent HSA binding partner, which may be investigated further in AD therapy in experimental settings.


Assuntos
Alcaloides/metabolismo , Fármacos Neuroprotetores/metabolismo , Albumina Sérica Humana/metabolismo , Sesquiterpenos/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Espectrometria de Fluorescência/métodos
11.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630545

RESUMO

Tyrosine-protein kinase Yes (YES1) belongs to the Tyrosine-protein kinase family and is involved in several biological activities, including cell survival, cell-cell adhesion, cell differentiation, and cytoskeleton remodeling. It is highly expressed in esophageal, lung, and bladder cancers, and thus considered as an attractive drug target for cancer therapy. In this study, we performed a virtual screening of phytoconstituents from the IMPPAT database to identify potential inhibitors of YES1. Initially, the molecules were retrieved on their physicochemical properties following the Lipinski rule of five. Then binding affinities calculation, PAINS filter, ADMET, and PASS analyses followed by an interaction analysis to select safe and clinically better hits. Finally, two compounds, Glabrene and Lupinisoflavone C (LIC), with appreciable affinities and a specific interaction towards the AlphaFold predicted structure of YES1, were identified. Their time-evolution analyses were carried out using an all-atom molecular dynamics (MD) simulation, principal component analysis, and free energy landscapes. Altogether, we propose that Glabrene and LIC can be further explored in clinical settings to develop anticancer therapeutics targeting YES1 kinase.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Tirosina Quinases , Simulação de Acoplamento Molecular , Tirosina
12.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164383

RESUMO

A sedentary lifestyle or lack of physical activity increases the risk of different diseases, including obesity, diabetes, heart diseases, certain types of cancers, and some neurological diseases. Physical exercise helps improve quality of life and reduces the risk of many diseases. Irisin, a hormone induced by exercise, is a fragmented product of FNDC5 (a cell membrane protein) and acts as a linkage between muscles and other tissues. Over the past decade, it has become clear that irisin is a molecular mimic of exercise and shows various beneficial effects, such as browning of adipocytes, modulation of metabolic processes, regulation of bone metabolism, and functioning of the nervous system. Irisin has a role in carcinogenesis; numerous studies have shown its impact on migration, invasion, and proliferation of cancer cells. The receptor of irisin is not completely known; however, in some tissues it probably acts via a specific class of integrin receptors. Here, we review research from the past decade that has identified irisin as a potential therapeutic agent in the prevention or treatment of various metabolic-related and other diseases. This article delineates structural and biochemical aspects of irisin and provides an insight into the role of irisin in different pathological conditions.


Assuntos
Fibronectinas/metabolismo , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese/metabolismo , Exercício Físico , Fibronectinas/análise , Humanos , Doenças Metabólicas/fisiopatologia , Modelos Moleculares , Neoplasias/fisiopatologia , Conformação Proteica , Comportamento Sedentário , Transdução de Sinais
13.
Molecules ; 27(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889524

RESUMO

Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Metformina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases
14.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558055

RESUMO

This research work focuses on the potential application of an organic compound, santalol, obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation in humans as well as other organisms and significantly downgrades their aesthetic value. The study is designed to explain the purification of tyrosinase from the mushroom Agaricus bisporus, followed by activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate against tyrosinase enzyme activity. Experimental results are further verified by molecular docking. Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin formation or browning.


Assuntos
Melaninas , Monofenol Mono-Oxigenase , Humanos , Simulação de Acoplamento Molecular , Sesquiterpenos Policíclicos , Inibidores Enzimáticos/química
15.
J Cell Biochem ; 122(10): 1445-1459, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34121218

RESUMO

MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of serine/threonine kinase family and considered an attractive drug target for many diseases. Screening of Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) using virtual high-throughput screening coupled with enzyme assay suggested that Naringenin (NAG) could be a potent inhibitor of MARK4. Structure-based molecular docking analysis showed that NAG binds to the critical residues found in the active site pocket of MARK4. Furthermore, molecular dynamics (MD) simulation studies for 100 ns have delineated the binding mechanism of NAG to MARK4. Results of MD simulation suggested that binding of NAG further stabilizes the structure of MARK4 by forming a stable complex. In addition, no significant conformational change in the MARK4 structure was observed. Fluorescence binding and isothermal titration calorimetric measurements revealed an excellent binding affinity of NAG to MARK4 with a binding constant (K) = 0.13 × 106 M-1 obtained from fluorescence binding studies. Further, enzyme inhibition studies showed that NAG has an admirable IC50 value of 4.11 µM for MARK4. Together, these findings suggest that NAG could be an effective MARK4 inhibitor that can potentially be used to treat cancer and neurodegenerative diseases.


Assuntos
Flavanonas/química , Flavanonas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ligação Proteica , Conformação Proteica
16.
J Cell Biochem ; 122(8): 897-910, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33829554

RESUMO

Cyclin-dependent kinase 6 (CDK6) is a member of serine/threonine kinase family, and its overexpression is associated with cancer development. Thus, it is considered as a potential drug target for anticancer therapies. This study showed the CDK6 inhibitory potential of vanillin using combined experimental and computational methods. Structure-based docking and 200 ns molecular dynamics simulation studies revealed that the binding of vanillin stabilizes the CDK6 structure and provides mechanistic insights into the binding mechanism. Enzyme inhibition and fluorescence-binding studies showed that vanillin inhibits CDK6 with an half maximal inhibitory concentration = 4.99 µM and a binding constant (K) 4.1 × 107 M-1 . Isothermal titration calorimetry measurements further complemented our observations. Studies on human cancer cell lines (MCF-7 and A549) showed that vanillin decreases cell viability and colonization properties. The protein expression studies have further revealed that vanillin reduces the CDK6 expression and induces apoptosis in the cancer cells. In conclusion, our study presents the CDK6-mediated therapeutic implications of vanillin for anticancer therapies.


Assuntos
Benzaldeídos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Quinase 6 Dependente de Ciclina , Neoplasias Pulmonares , Simulação de Dinâmica Molecular , Proteínas de Neoplasias , Células A549 , Benzaldeídos/química , Benzaldeídos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Células MCF-7 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo
17.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681645

RESUMO

Irisin is a clinically significant protein playing a valuable role in regulating various diseases. Irisin attenuates synaptic and memory dysfunction, highlighting its importance in Alzheimer's disease. On the other hand, Microtubule Affinity Regulating Kinase 4 (MARK4) is associated with various cancer types, uncontrolled neuronal migrations, and disrupted microtubule dynamics. In addition, MARK4 has been explored as a potential drug target for cancer and Alzheimer's disease therapy. Here, we studied the binding and subsequent inhibition of MARK4 by irisin. Irisin binds to MARK4 with an admirable affinity (K = 0.8 × 107 M-1), subsequently inhibiting its activity (IC50 = 2.71 µm). In vitro studies were further validated by docking and simulations. Molecular docking revealed several hydrogen bonds between irisin and MARK4, including critical residues, Lys38, Val40, and Ser134. Furthermore, the molecular dynamic simulation showed that the binding of irisin resulted in enhanced stability of MARK4. This study provides a rationale to use irisin as a therapeutic agent to treat MARK4-associated diseases.


Assuntos
Fibronectinas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Sítios de Ligação , Fibronectinas/química , Fibronectinas/uso terapêutico , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estabilidade Proteica
18.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429317

RESUMO

Cyclin-Dependent Kinase 6 (CDK6) plays an important role in cancer progression, and thus, it is considered as an attractive drug target in anticancer therapeutics. This study presents an evaluation of dietary phytochemicals, capsaicin, tocopherol, rosmarinic acid, ursolic acid, ellagic acid (EA), limonene, caffeic acid, and ferulic acid for their potential to inhibit the activity of CDK6. Molecular docking and fluorescence binding studies revealed appreciable binding affinities of these compounds to the CDK6. Among them, EA shows the highest binding affinity for CDK6, and thus a molecular dynamics simulation study of 200 ns was performed to get deeper insights into the binding mechanism and stability of the CDK6-EA complex. Fluorescence binding studies revealed that EA binds to the CDK6 with a binding constant of K = 107 M-1 and subsequently inhibits its enzyme activity with an IC50 value of 3.053 µM. Analysis of thermodynamic parameters of CDK6-EA complex formation suggested a hydrophobic interaction driven process. The treatment of EA decreases the colonization of cancer cells and induces apoptosis. Moreover, the expression of CDK6 has been downregulated in EA-treated human breast cancer cell lines. In conclusion, this study establishes EA as a potent CDK6 inhibitor that can be further evaluated in CDK6 directed anticancer therapies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Ácido Elágico/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Calorimetria , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Ácido Elágico/química , Feminino , Fluorescência , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Termodinâmica
19.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070031

RESUMO

Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that works under acute transcriptional control by several stimuli, including serum and glucocorticoids. It plays a significant role in the cancer progression and metastasis, as it regulates inflammation, apoptosis, hormone release, neuro-excitability, and cell proliferation. SGK1 has recently been considered as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In the present study, we have performed structure-based virtual high-throughput screening of natural compounds from the ZINC database to find potential inhibitors of SGK1. Initially, hits were selected based on their physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and other drug-like properties. Afterwards, PAINS filter, binding affinities estimation, and interaction analysis were performed to find safe and effective hits. We found four compounds bearing appreciable binding affinity and specificity towards the binding pocket of SGK1. The docking results were complemented by all-atom molecular dynamics simulation for 100 ns, followed by MM/PBSA, and principal component analysis to investigate the conformational changes, stability, and interaction mechanism of SGK1 in-complex with the selected compound ZINC00319000. Molecular dynamics simulation results suggested that the binding of ZINC00319000 stabilizes the SGK1 structure, and it leads to fewer conformational changes. In conclusion, the identified compound ZINC00319000 might be further exploited as a scaffold to develop promising inhibitors of SGK1 for the therapeutic management of associated diseases, including cancer.


Assuntos
Produtos Biológicos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa