Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Environ Manage ; 356: 120576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513585

RESUMO

Lakes in taiga and tundra regions may be silently undergoing changes due to global warming. One of those changes is browning in lake color. The browning interacts with the carbon cycle, ecosystem dynamics, and water quality in freshwater systems. However, spatiotemporal variabilities of browning in these regions have not been well documented. Using MODIS remote sensing reflectance at near ultraviolet wavelengths from 2002 to 2021 on the Google Earth Engine platform, we quantified long-term browning trends across 7616 lakes (larger than 10 km2) in taiga and tundra biomes. These lakes showed an overall decreased trend in browning (Theil-Sen Slope = 0.00015), with ∼36% of these lakes showing browning trends, and ∼1% of these lakes showing statistically significant (p-value <0.05) browning trends. The browning trends more likely occurred in small lakes in high latitude, low ground ice content regions, where air temperature increased and precipitation decreased. While temperature is projected to increase in response to climate change, our results provide one means to understand how biogeochemical cycles and ecological dynamics respond to climate change.


Assuntos
Ecossistema , Lagos , Taiga , Tundra , Mudança Climática
2.
Opt Express ; 30(7): 10329-10345, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473003

RESUMO

The Trophic state index (TSI) is a vital parameter for aquatic ecosystem assessment. Estimating TSI by remote sensing is still a challenge due to the multivariate complexity of the eutrophication process. A comprehensive in situ spectral-biogeochemical dataset for 7 lakes in Northeast China was collected in October 2020. The dataset covers trophic states from oligotrophic to eutrophic, with a wide range of total phosphorus (TP, 0.07-0.2 mg L-1), Secchi disk depth (SDD, 0.1-0.78 m), and chlorophyll a (Chla, 0.11-20.41 µg L-1). Here, we propose an empirical method to estimate TSI from remote sensing data. First, TP, SDD, and Chla were estimated by band ratio/band combination models. Then TSI was estimated using the Carlson model with a high R2 (0.88), a low RMSE (3.87), and a low MRE (6.83%). Synergistic effects between TP, SDD, and Chla dominated the trophic state, changed the distribution of light in the water column, affected the spectral characteristics. Furthermore, the contribution of each parameter for eutrophication were different among the studied lakes from ternary plot. High Chla concentration was the main reason for eutrophication in HMT Lake with 45.4% of contribution more than the other two parameters, However, in XXK Lake, high TP concentrations were the main reason for eutrophication with 66.8% of contribution rather than Chla and SDD. Overall, the trophic state was dominated by TP, and SDD accounted for 85.6% of contribution in all sampled lakes. Additionally, we found using one-parameter index to evaluate the lake trophic state will lead to a great deviation, even with two levels of difference. Therefore, multi-parameter TSI is strongly recommended for the lake trophic state assessment. Summarily, our findings provide a theoretical and methodological basis for future large-scale estimations of lake TSI using satellite image data, help with water quality monitoring and management.


Assuntos
Ecossistema , Lagos , Clorofila A , Monitoramento Ambiental/métodos , Imageamento Hiperespectral
3.
Glob Chang Biol ; 28(7): 2327-2340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995391

RESUMO

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2 ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.


Assuntos
Monitoramento Ambiental , Eutrofização , Animais , Mudança Climática , Monitoramento Ambiental/métodos , Lagos , Vento
4.
J Environ Manage ; 302(Pt A): 113958, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678543

RESUMO

More and more hyper-spectral satellites will be used to estimate total suspended matter (TSM) in waters instead of multi-spectral satellites, such as China's Gaofen-5 and Zhuhai-1. Although they have not been widely used because of the consistency of sampling and image time. Hence, the study based on measured hyper-spectroscopy is important for applying to hyper-spectral satellites. Fractional-order derivatives (FODs) considers more detailed spectral information, and it is a better spectral preprocessing method than conventional integer-order derivatives. The application and analysis of FODs for spectra in waters is rare. If FOD is successfully applied to estimate TSM, the TSM mapping with FOD using hyper-spectral satellites will be meaningful. Based on these points, this study aimed to apply FOD to predict TSM and to prove the prediction feasibility of FOD in waters. Different prediction models and eight FOD transformation processes with increment of 0.25 per step for 392 spectral reflectance data from China were used and compared. The prediction models include the optimum models of the single wavelength, ratio index, difference index and TSM index at each FOD order, and the random forest (RF) model with all wavelengths was also used. Discrete wavelet transform (DWT) was used to reduce noise and improve the model accuracy after using FOD. Our results achieved the followings First, FOD enhanced spectral characteristics at 500-600 nm and 800 nm that were affected by TSM. Second, the correlation between TSM and FOD spectra was enhanced (e.g., the correlation coefficients of 19 wavelengths (789-807 nm) of 0.75-order were higher than 0.8 but the original spectra were not). Third, FOD improved the performance of different prediction models, and the RF model from 0.5-order to 1.25-order derivative spectra all led good results (). Fourth, DWT can reduce the noise and improve the performance, and FOD-DWT model of 1.25-order led the R2 of 0.84, RMSE of 16.30 and MAPE of 78.62 in validation. Overall, our results suggest that FOD can improve the prediction performance for most models, and the optimum order of some models is not integer. Our results also provide a reference for predicting other water quality parameters and mapping these parameters using hyper-spectral satellites. The accurate estimation of TSM is helpful for protecting ecological and social environments.


Assuntos
Monitoramento Ambiental , Análise de Ondaletas , China , Análise Espectral
5.
Environ Sci Technol ; 55(5): 2929-2938, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33595308

RESUMO

The proliferation of algal blooms (ABs) in lakes and reservoirs (L&Rs) poses a threat to water quality and the ecological health of aquatic communities. With global climate change, there is a concern that the frequency and geographical expansion of ABs in L&Rs could increase. China has experienced rapid economic growth and major land-use changes over the last several decades and therefore provides an excellent context for such an analysis. About 289,600 Landsat images were used to examine the spatiotemporal distribution of ABs in L&Rs (>1 km2) across China (1983-2017). Results showed significant changes in the temporal slope of the sum of normalized area (0.26), frequency (2.28), duration (6.14), and early outbreak (-3.48) of AB events in L&Rs across China. Specifically, AB-impacted water bodies expanded longitudinally, and the time range of AB observation has expanded starting in the 2000s. Spearman correlation and random forest regression analyses further indicated that, among climatic factors, wind speed and temperature contributed the most to AB expansion. Overall, anthropogenic forces have overridden the imprints of climatic factors on the temporal evolution of ABs in China's L&Rs and therefore could inform policy decisions for the management of these resources.


Assuntos
Monitoramento Ambiental , Lagos , China , Eutrofização , Qualidade da Água
6.
Environ Res ; 201: 111579, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197817

RESUMO

Reservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (aph (675)) and Chlorophyll a (Chla) concentration in different regions (R2:0.60-0.82). The non-algal particle (NAP) absorption coefficient (aNAP) showed an increasing trend for reservoirs with trophic states. Significant correlation (p < 0.05) was observed between chromophoric dissolved organic matter (CDOM) absorption and water chemical parameters. The influencing factors for contributing the relative proportion of OACs absorption including the hydrological factors and water quality factors were analyzed. The non-water absorption budget from our data showed the variations of the dominant absorption types which underscored the need to develop and parameterize region-specific bio-optical models for large-scale assessment in water reservoirs.


Assuntos
Ecossistema , Fitoplâncton , China , Clorofila A , Hidrologia
7.
Environ Res ; 199: 111299, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33984309

RESUMO

Water clarity, denoted by the Secchi disk depth (SDD), is one of the most important indicators for monitoring water quality. In the Songhua River basin (SHRB), few studies have used Landsat to monitor long-term (3-4 decades) changes in lake SDD and explore the impact of natural and human factors on SDD interannual variation at the watershed scale. Lakes in the SHRB are of great significance to local populations. Understanding the spatiotemporal dynamics of SDD could help policymakers manage, protect, and predict lake water quality. We utilized the Landsat red/blue band ratio in the Google Earth Engine to estimate the SDD of 77 lakes and generated annual mean SDD maps from 1990 to 2018. The results of the SDD interannual changes showed that the water quality in the SHRB has improved since 2005. Specifically, the SDD in the SHRB displayed a significant increasing trend (p < 0.05) from 0.29 m in 2005 to 0.37 m in 2018. Moreover, the number of lakes displaying a significant increasing trend for SDD increased from 18 between 1990 and 2005 to 31 between 2005 and 2018. We also found that use of chemical fertilizer significantly impacted lakes, followed by wastewater discharge and normalized difference vegetation index. Improvements in the quantity and ability of wastewater discharge treatment and increased vegetation cover have alleviated water pollution; however, the non-point pollution of agriculture still poses a threat to some lakes in the SHRB. Therefore, more efforts should be made to further improve the aquatic ecological environment of SHRBs.


Assuntos
Rios , Qualidade da Água , China , Monitoramento Ambiental , Humanos , Lagos , Água , Poluição da Água
8.
J Environ Manage ; 286: 112275, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33684799

RESUMO

Chromophoric dissolved organic matter (DOM) is called as CDOM which could affect the optical properties of surface waters, and is a useful parameter for monitoring complex inland aquatic systems. Large-scale monitoring of CDOM using remote-sensing has been a challenge due to the poor transferability of CDOM retrieval models across regions. To overcome these difficulties, a study is conducted using Sentinel-2 images, in situ reflectance spectral data, and water chemical parameters at 93 water reservoirs across China classified by trophic state. Empirical algorithms are established between CDOM absorption coefficient aCDOM(355) and reflectance band ratio (B5/B2,vegetation Red Edge/Blue) acquired in situ and via Sentinel-2 MSI sensors. Relationships are stronger (r2 > 0.7, p < 0.05) when analysis is conducted separately by trophic states. Validation models show that, by accounting for trophic state of reservoirs and using B5/B2 band ratios, it is possible to expand the geographical range of remote sensing-based models to determine CDOM. However, the accuracy of model validation decreased from oligotrophic (r2: 0.86) to eutrophic reservoirs (r2: 0.82), likely due to increased complexity of CDOM sources in nutrient-rich systems. This study provides a strategy for using local and remote-sensing data to monitor the spatial variations of CDOM in reservoirs based on different trophic states, and will contribute to water resources management.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , China
9.
J Environ Manage ; 286: 112231, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33706125

RESUMO

As important components of dissolved organic matter (DOM) in an aquatic environment, colored DOM (CDOM) and dissolved organic carbon (DOC) play an essential role in the carbon cycle of an inland aquatic system. Traditionally, CDOM and DOC in inland waters have been primarily determined using in situ observations and laboratory measurements. Most of past lake investigations on CDOM and DOC focused on easily accessible regions and covered a small fraction of lakes worldwide. To our knowledge, little is known about lakes in less accessible areas like the Qinghai-Tibet Plateau (QTP). To address this challenge, optical satellite remote sensing might be useful for capturing a synoptic view of CDOM and DOC with high frequency at large scales, complementing in situ sampling methods for inland waters. In this study, 216 samples collected from 36 lakes across the QTP (2014-2017) were examined to determine the relationships between CDOM absorption coefficient at 350 nm (a350) and Sentinel-2A Multi Spectral Instrument (MSI) imagery reflectance data. A strong positive linear correlation with a350 was observed with B4/B2 (R2 = 0.78, p < 0.01) and with B4/B3 (R2 = 0.62). A multi-step regression model was established for estimating a350 with B4/B2 and B4/B3 as input variables (R2 = 0.81, p < 0.01). A scattered CDOM-DOC relationship was revealed (R2 = 0.34, p < 0.05) using a pooled dataset. By dividing the inland waters into four separate groups in accordance with their salinity gradients, we were able to develop much stronger relationships (R2 > 0.8, p < 0.01) for CDOM-DOC. Significant differences between fresh and saline waters were demonstrated using satellite-derived CDOM and DOC, where high CDOM (0.86 ± 0.67 m-1) and low DOC (3.76 ± 4.92 mg L-1) concentrations were observed for freshwaters, while inverse trends of CDOM (0.53 ± 0.72 m-1) and DOC (15.76 ± 17.07 mg L-1) were demonstrated for saline lakes in the Tibetan Plateau. This study confirmed that satellite optical imagery can be used for the monitoring of CDOM and DOC of the lakes of the Tibetan Plateau, which are sensitive to a changing climate and are infrequently investigated due to the harsh environment and poor accessibility. Moreover, it highlighted the importance of combining salinity and remote sensing data in the process of estimating lake DOC.


Assuntos
Carbono , Lagos , Carbono/análise , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Tibet
10.
Environ Res ; 182: 109084, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31901673

RESUMO

In urban settings, one may find (i) lakes that are non-treated (NT) and impacted by recurrent discharges of pollutants and nutrients, and (ii) lakes that, through restoration measures and active management, are treated (T) from external inputs. The optical properties of chromophoric dissolved organic matter (CDOM) have been used to assess the anthropogenic impact on lakes ecology, but their application in comparative assessments of urban lakes has not been attempted. For 2 years, we measured nutrients and CDOM properties in water samples collected from NT and T lakes in the city of Changchun, China. Significant differences in CDOM properties were found between the two types of lakes, and these results were supported by redundancy analysis. The NT lakes were eutrophic while the T lakes were mesotrophic, with mean trophic status index (TSI) of 74.2 and 50.3, respectively. The CDOM absorption coefficient at 350 nm, a(350), was 2-fold higher in NT than in T lakes (6.59 vs 3.21 m-1). In the NT lakes, CDOM components predominantly comprised large molecular weight (MW > 1000-Da) humus-like substances of allochthonous origin, whereas in the T lakes CDOM was dominated by low MW (<1000-Da) substances from autochthonous production. Seasonal fluctuation has a great influence on the CDOM concentration, but a little influence on its molecular composition. The CDOM concentration were higher in summer than in other seasons. Weather conditions (rainfall, temperature) and biophysical processes (biodegradation, photo-bleaching) likely contributed to these variations. We found the water quality of the treated lakes was getting better from 2016 to 2018. In summary, the study results, not only revealed seasonal effects, but most importantly documented the impact of human activities on the characteristics of CDOM in urban lakes. Most specifically, the sharp difference between the lakes in regard to a(350) (2-fold lower in T than in NT lakes) demonstrated the suitability CDOM absorption coefficient as an early indicator of the impact of treatment measures on the hydrochemistry of DOM in urban lakes.


Assuntos
Monitoramento Ambiental , Lagos , Compostos Orgânicos , China , Cidades , Humanos , Estações do Ano , Espectrometria de Fluorescência , Qualidade da Água
11.
J Environ Manage ; 262: 110334, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250811

RESUMO

Understanding the spatiotemporal dynamics of total suspended matter (TSM) in waters is necessary to promote efficient water resource management. In our study, we have estimated the spatiotemporal pattern of TSM with the combination of time-series Landsat images and field survey. Among various remote sensing-derived parameters, the red/blue band turns to be robust and the most sensitive to the TSM from field measurements. In Songnen Plain, the mean annual TSM in 60.5% of the water bodies decreased from 1984 to 2018. The decreasing of TSM is likely due to the increasing of vegetation in the area. The TSM concentration in waters declined from April to July, and then increased from September onwards. We also found the TSM in water bodies in Songnen Plain has very high spatial variation. Our results indicated that the meteorological factors such as wind and precipitation may affect the variation of TSM. Our results demonstrate that long-term Landsat data are useful to examine TSM in inland waters. Our findings can support for water resource management under human activities and climate change.


Assuntos
Monitoramento Ambiental , Vento , China , Mudança Climática
12.
J Environ Manage ; 276: 111338, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937234

RESUMO

Lake ice is an essential and integral part of the cryosphere and freshwater systems. The formation of lake ice affects the physical, hydrological, and biological conditions of ecological systems. Global warming may contribute to even shorter periods of ice cover in the lakes of the Frigid Zone, which adversely affects the growth of phytoplankton and primary productivity. This study was conducted for the purpose of evaluating the growth of phytoplankton and factors involved, in 28 ice-covered lakes across the Songnen Plain, in the Northeast of China, to understand how they take part in the whole-ecosystem functioning. A total of 1026 water samples were collected in April, September, and January during the period 2014-2018. In the frozen period, the concentration levels of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) were all comparable with the spring and autumn. Despite the limited light availability and low temperature, the phytoplankton survived in sub-ice waters during winter with a low concentration of chlorophyll a (Chla). Its average concentration was positively correlated with the concentration observed in the previous autumn (rp = 0.563, p < 0.01). According to the regression tree analysis, during the winter period, Chla was mainly related to the concentration of TN in sub-ice water (TNwater) and with the difference of concentration of TP between water and ice (TPcd). Furthermore, either in ice or in sub-ice water, the concentration of Chla was also significantly affected by total suspended matter (TSM) (p < 0.05). The levels of TNwater, TPcd, and TSM could explain the 77.8% of the variance in the concentration of Chla during winter with contributions in the ranges of 25.5%-35.0%, 9.2%-11.3%, and 21.5%-34.0%, respectively (p < 0.05). This research substantially contributes to comprehending how the existing conditions under-ice affect the whole ecosystem when the ice cover is reduced lakes or rivers.


Assuntos
Camada de Gelo , Lagos , China , Clorofila , Clorofila A , Ecossistema , Monitoramento Ambiental , Fósforo/análise , Fitoplâncton , Estações do Ano
13.
Environ Sci Ecotechnol ; 19: 100337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38107556

RESUMO

The spatiotemporal variability of lake partial carbon dioxide pressure (pCO2) introduces uncertainty into CO2 flux estimates at the lake water-air interface. Knowing the variation pattern of pCO2 is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake pCO2 based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021. We found significant seasonal fluctuations in pCO2, with decreasing values as trophic states intensify within the same region. Saline lakes exhibit lower pCO2 levels than freshwater lakes. These pCO2 dynamics result in variable areal CO2 emissions, with lakes exhibiting different trophic states (oligotrophication > mesotrophication > eutrophication) and saline lakes differing from freshwater lakes (-23.1 ± 17.4 vs. 19.3 ± 18.3 mmol m-2 d-1). These spatiotemporal pCO2 variations complicate total CO2 emission estimations. Using area proportions of lakes with varying trophic states and salinity in China, we estimate China's lake CO2 flux at 8.07 Tg C yr-1. In future studies, the importance of accounting for lake salinity, seasonal dynamics, and trophic states must be noticed to enhance the accuracy of large-scale carbon emission estimates from lake ecosystems in the context of climate change.

14.
Water Res ; 252: 121204, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301526

RESUMO

Dissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones. However, there is limited knowledge regarding the spatial variations and molecular composition of DOM in lakes within various frozen ground zones. In this study, we examined the spatial variations of in-lake DOM both quantitatively, focusing on dissolved organic carbon (DOC), and qualitatively, by evaluating optical properties and conducting molecular characterization using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Lakes in cold regions retained more organic carbon compared to those in warmer regions, the comparison of the mean value of DOC concentration of all sampling sites in the same frozen ground zone showed that the highest mean lake DOC concentration found in the permafrost zone at 21.4 ± 19.3 mg/L. We observed decreasing trends in E2:E3 and MLBL, along with increasing trends in SUVA254 and AImod, along the gradually warming ground. These trends suggest lower molecular weight, reduced aromaticity, and increased molecular lability of in-lake DOM in the permafrost zone compared to other frozen ground zones. Further FT-ICR MS characterization revealed significant molecular-level heterogeneity of DOM, with the lowest abundance of assigned DOM molecular formulas found in lakes within permafrost zones. In all studied zones, the predominant molecular formulas in-lake DOM were compounds consisted by CHO elements, accounting for 40.1 % to 63.1 % of the total. Interestingly, the percentage of CHO exhibited a gradual decline along the warming ground, while there was an increasing trend in nitrogen-containing compounds (CHON%). Meanwhile, a substantial number of polyphenols were identified, likely due to the higher rates of DOM mineralization and the transport of terrestrial DOM derived from vascular plants under the elevated temperature and precipitation conditions in the warming region. In addition, sulfur-containing compounds (CHOS and CHNOS) associated with synthetic surfactants and agal derivatives were consistently detected, and their relative abundances exhibited higher values in seasonal and short-frozen ground zones. This aligns with the increased anthropogenic disturbances to the lake's ecological environment in these two zones. This study reported the first description of in-lake DOM at the molecular level in different frozen ground zones. These findings underline that lakes in the permafrost zone serve as significant hubs for carbon processing. Investigating them may expand our understanding of carbon cycling in inland waters.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Espectrometria de Massas , China , Carbono
15.
Sci Total Environ ; 931: 172797, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679084

RESUMO

Human activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.8 °C/decade). This paper presents a comprehensive overview of the last 30 years of research investigating how subarctic and Arctic lakes respond to climate warming. The review focused on studies where remote sensing technology was used to quantify these responses. The difference between summer lake water temperature and air temperature varied between 1.7 and 5.4 °C in subarctic lakes and 2.4-3.2 °C in Arctic lakes. Overall, the freezing date of lake ice is generally delayed and the date of lake thawing occurs earlier. Lake surface area (4-48.5 %), and abundance in the subarctic and Arctic region have increased significantly due to rising temperature, permafrost thawing, increased precipitation and other localized surface disturbances. However, in recent years, instances of lake shrinkage (between -0.4 % and -40 %) have also been reported, likely due to riparian overflow, groundwater infiltration and lateral drainage. Furthermore, in subarctic and Arctic lakes, climate change and permafrost thawing would release CO2 and CH4, and alter carbon dynamics in impacted lakes through various interconnected processes which could potentially affect the quality of carbon (terrestrial, algae) entering a lake system. The review also highlighted a potential intersection between permafrost melting and public health through human exposure to long-buried viruses. Subarctic and arctic ecosystems' responses to climate change will continue to be an area of intense research interest, and this review has highlighted priority areas for research and how remote sensing technologies can facilitate the pursuit of such a research agenda.

16.
Sci Total Environ ; 899: 166363, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598955

RESUMO

In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal. In this study, we collected a comprehensive dataset of 640 pairs of in situ measured pigment concentration and the Ocean and Land Color Instrument (OLCI) reflectance from 25 lakes and reservoirs in China during 2020-2022. We then developed a framework consisting of the water optical classification algorithm and three candidate algorithms: baseline height, band ratio, and three-band algorithm. The optical classification method used remote sensing reflectance (Rrs) baseline height in three bands: Rrs(560), Rrs(647) and Rrs(709) to classify the samples into five types, each with a specific spectral shape and water quality character. The improvement of PC estimation accuracy for optically classified waters was shown by comparison with unclassified waters with RMSE = 72.6 µg L-1, MAPE = 80.4 %, especially for the samples with low PC concentration. The results show that the band ratio algorithm has a strong universality, which is suitable for medium turbid and clean water. In addition, the three-band algorithm is only suitable for medium turbid water, and the line height algorithm is only suitable for high PC content water. Furthermore, the five distinguished types with significant differences in the value of the PC/Chla ratio well indicated the risk rank assessment of cyanobacteria. In conclusion, the proposed framework in this paper solved the problem of PC estimation accuracy problem in optically complex waters and provided a new strategy for water quality inversion in inland waters.

17.
Water Res ; 230: 119540, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608522

RESUMO

The pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China. The Landsat surface reflectance was matched with 1150 pairs fieldtrip samples and the nine sensitive spectral variables with good correlation with HIX were selected as the inputs in machine learning methods. The calibration of XGBoost model (R2 = 0.86, RMSE = 0.29) outperformed other models. Our results indicated that the entire dataset of HIX has a strong association with Landsat reflectance, yielding low root mean square error between measured and predicted HIX (R2 = 0.81, RMSE = 0.42) for lakes in China. Finally, the optimal XGBoost model was used to calculate the spatial distribution of HIX of 2015 and 2020 in typical lakes selected from the Report on the State of the Ecology and Environment in China. The significant decreasing of HIX from 2015 to 2020 with trophic states showed positive control of humification level of lakes based on the published document of Action plan for prevention and control of water pollution in 2015 of China. The calibrated model would greatly facilitate FDOM monitoring in lakes, and provide indicators for relative DOM sources to evaluate the impact of water protection measures or human disturbance effect from Covid-19 lockdown, and offer the government supervision to improve the water quality management for lake ecosystems.


Assuntos
COVID-19 , Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Lagos , Tecnologia de Sensoriamento Remoto , Matéria Orgânica Dissolvida , Ecossistema , Controle de Doenças Transmissíveis , China
18.
Sci Total Environ ; 892: 164474, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268137

RESUMO

Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R2 = 0.87, RMSE = 10.16 mg/L, and MAPE = 38.37 %) to retrieve the autumn TSM of lakes at national scale. This model exhibited stable and reliable performances through transferability validation and comparative analysis with published TSM models, and was implemented to generate autumn TSM maps for large lakes (≥50 km2) across China during 1990-2020.We found that 78.03 % of large lakes with TSM < 20 mg/L were dominant in 2020 across China, and these lakes were mainly located in the plateau and mountain regions. In the first gradient terrain (FGT) and second gradient terrain (SGT), the number of lakes showing significant (p < 0.05) decreasing TSM trends increased from 1990-2004 to 2004-2020, while those with opposite directions in TSM decreased. Lakes in the third gradient terrain (TGT) exhibited the inverse quantitative change in these two TSM trends compared with the FGT and SGT. A relative contribution analysis at the watershed level indicated that the first two leading factors that control TSM significant change in the FGT were lake area and wind speed, in the SGT were lake area and NDVI, and in the TGT were population and NDVI, respectively. The impacts of anthropogenic factors on lakes are continuing, particularly in eastern China, and more efforts are needed to improve and protect the water environment in the future. Our findings might help water resource managers better grasp the current state of water quality.


Assuntos
Ecossistema , Monitoramento Ambiental , Efeitos Antropogênicos , Lagos , China
19.
Sci Total Environ ; 846: 157328, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868401

RESUMO

Total suspended matter (TSM), as an indicator of the concentration of fine materials in the water column including particulate nutrients, pollutants, and heavy metals, is widely used to monitor aquatic ecosystems. However, the long-term spatiotemporal variations of TSM in lakes across the Tibetan Plateau (TP) and their response to environmental factors are rarely explored. Accordingly, taking advantage of the Landsat top-of-atmosphere reflectance and in-situ data, an empirical model (R2 = 0.83, RMSE = 1.08 mg/L, and MAPE = 19.49 %) was developed to estimate the average autumnal TSM in large TP lakes (≥50 km2) during the 1990-2020 period. For analyzing the spatiotemporal variability in TP lakes TSM, the examined lakes were classified into four types (Type A-D) based on their water storage changing in different periods. The results showed that the lakes in the southern and some northeastern parts of the TP exhibited lower TSM values than those situated in other regions. The assessment of TSM in each of these four lake types showed that more than half of them had a TSM value of <20 mg/L. Apart from Type D, the lakes with the TSM showing significantly decreasing trends were dominantly Types A-C. A relative contribution analysis involving five driving factors indicated that they contributed by >50 % to lake TSM interannual variation in 73 out of 114 watersheds, and the lakes area change demonstrated the greatest contribution (82.2 %), followed by wind speed (11.0 %). Further comparison between the entire lake and the non-expansive regions suggested that the expansive region played an indispensable role in determining the TSM value of the whole lake. This study can help to better understand the water quality condition and provide valuable information for policy-makers to maintain sustainable development in the TP region.


Assuntos
Monitoramento Ambiental , Lagos , China , Ecossistema , Monitoramento Ambiental/métodos , Tibet , Qualidade da Água
20.
Sci Total Environ ; 806(Pt 4): 151374, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740658

RESUMO

In this study, we empirically developed a robust model (the Root Mean Square Error (RMSE), bias, NSE and RE were 26.63 mg/L, -4.86 mg/L, 0.47 and 16.47%, respectively) for estimating the total suspended solids (TSS) concentrations in lakes and reservoirs (Hereinafter referred to as lakes) across the Eastern Plain Lake (EPL) Zone. The model was based on 700 in-situ TSS samples collected during 2007-2020 and logarithmic transformed red band reflectance of Landsat data. Based on the Google Earth Engine (GEE), the TSS concentrations in 16,804 lakes were mapped from 1984 to 2019. The results demonstrated a decreasing tendency of TSS in 82.2% of the examined lakes (72.5% of the basins) indicating that the pollutants carried by TSS flowing into the lakes were decreasing. Statistically significant variation (p < 0.05) was found in half of these lakes (28.6% of the basins). High TSS level (>100 mg/L) was observed in 0.31% of lakes (1.1% of the basins). The changing rates of TSS in 47.8% of the lakes (52.7% of the basins) ranged between -50 mg/L/yr and 0. We found high and significantly increased relative spatial heterogeneity of TSS in 4.6% and 6.5% of lakes, respectively. Likewise, the environmental factors, i.e., fertilizer usage, domestic wastewater, industrial wastewater, precipitation, wind speed and Normalized Difference Vegetation Index (NDVI) exhibited a significant correlation with interannual TSS in 38, 21, 20, 11, 17 and 15 of the 91 basins, respectively. This analysis indicated that only precipitation and fertilizer usage were significantly (p < 0.05) related to the spatial distribution of TSS. The relative contributions of the six factors to the interannual TSS changes were varied in different basins. Overall, the NDVI (the representation of vegetation cover) had a high mean contribution to the interannual TSS changes with an average contribution of 7.2%, and contributions of fertilizer were varied greatly among the basins (0.01%-68%). Human activities (fertilizer usage, domestic wastewater, industrial wastewater) and natural factors (precipitation, wind speed and NDVI) played relatively important roles to TSS changes in 14 and 15 of the 91 basins, respectively. Beyond the six factors in this study, other unanalyzed factors (such as lake depth and soil texture) also had some impacts on the distribution of TSS in the study area.


Assuntos
Monitoramento Ambiental , Lagos , China , Humanos , Vento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa