Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 260(1): 5, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777878

RESUMO

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Assuntos
Brassinosteroides , Homeostase , Raízes de Plantas , Espécies Reativas de Oxigênio , Tolerância ao Sal , Esteroides Heterocíclicos , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Brassinosteroides/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Esteroides Heterocíclicos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Estresse Salino , Estresse Oxidativo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Catalase/metabolismo
2.
Photosynth Res ; 126(2-3): 285-300, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25837856

RESUMO

To investigate the molecular mechanism of chloroplast biogenesis and development, we characterized an Arabidopsis mutant (dg169, delayed greening 169) which showed growth retardation and delayed greening phenotype in leaves. Newly emerged chlorotic leaves recovered gradually with leaf development in the mutant, and the mature leaves showed similar phenotype to those of wild-typewild-type plants. Compared with wild-type, the chloroplasts were oval-shaped and smaller and the thylakoid membranes were less abundant in yellow section of young leaves of dg169. In addition, the functions of photosystem II (PSII) and photosystem I (PSI) were also impaired. Furthermore, the amount of core subunits of PSII and PSI, as well as PSII and PSI complexes reduced in yellow section of young leaves of dg169. Map-based positional cloning identified that phenotype of dg169 was attributed to a point mutation of ATase2 which converts the conserved Ile-155 residue to Asn. ATase2 catalyzes the first step of de novo purine biosynthesis. This mutation resulted in impaired purine synthesis and a significant decrease in ATP, ADP, GTP and GDP contents. The analysis of ATase2-GFP protein fusion showed that ATase2 was localized to nucleoid of chloroplasts. Our results further demonstrated that the levels of PEP-dependent transcripts in yellow section of young leaves of dg169 were decreased while NEP-dependent and both PEP- and NEP-dependent transcripts and chloroplast DNA replications were increased. The results in this study suggest that ATase2 plays an essential role in early chloroplast development through maintaining PEP function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Purinas/metabolismo , Proteínas Recombinantes de Fusão , Tilacoides/metabolismo
3.
Front Genet ; 12: 659962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239538

RESUMO

Artemisia argyi is an important medicinal plant widely utilized for moxibustion heat therapy in China. The terpenoid biosynthesis process in A. argyi is speculated to play a key role in conferring its medicinal value. However, the molecular mechanism underlying terpenoid biosynthesis remains unclear, in part because the reference genome of A. argyi is unavailable. Moreover, the full-length transcriptome of A. argyi has not yet been sequenced. Therefore, in this study, de novo transcriptome sequencing of A. argyi's root, stem, and leaf tissues was performed to obtain those candidate genes related to terpenoid biosynthesis, by combining the PacBio single-molecule real-time (SMRT) and Illumina sequencing NGS platforms. And more than 55.4 Gb of sequencing data and 108,846 full-length reads (non-chimeric) were generated by the Illumina and PacBio platform, respectively. Then, 53,043 consensus isoforms were clustered and used to represent 36,820 non-redundant transcripts, of which 34,839 (94.62%) were annotated in public databases. In the comparison sets of leaves vs roots, and leaves vs stems, 13,850 (7,566 up-regulated, 6,284 down-regulated) and 9,502 (5,284 up-regulated, 4,218 down-regulated) differentially expressed transcripts (DETs) were obtained, respectively. Specifically, the expression profile and KEGG functional enrichment analysis of these DETs indicated that they were significantly enriched in the biosynthesis of amino acids, carotenoids, diterpenoids and flavonoids, as well as the metabolism processes of glycine, serine and threonine. Moreover, multiple genes encoding significant enzymes or transcription factors related to diterpenoid biosynthesis were highly expressed in the A. argyi leaves. Additionally, several transcription factor families, such as RLK-Pelle_LRR-L-1 and RLK-Pelle_DLSV, were also identified. In conclusion, this study offers a valuable resource for transcriptome information, and provides a functional genomic foundation for further research on molecular mechanisms underlying the medicinal use of A. argyi leaves.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa