RESUMO
Lipid remodeling plays a critical role in plant response to abiotic stress and metabolic perturbations. Key steps in this process involve modifications of phosphatidylcholine (PC) acyl chains mediated by lysophosphatidylcholine: acyl-CoA acyltransferases (LPCATs) and phosphatidylcholine: diacylglycerol cholinephosphotransferase (ROD1). To assess their importance in lipid homeostasis, we took advantage of the trigalactosyldiacylglycerol1 (tgd1) mutant that exhibits marked increases in fatty acid synthesis and fatty acid flux through PC due to a block in inter-organelle lipid trafficking. Here, we showed that the increased fatty acid synthesis in tgd1 is due to posttranslational activation of the plastidic acetyl-coenzyme A carboxylase. Genetic analysis showed that knockout of LPCAT1 and 2 resulted in a lethal phenotype in tgd1. In addition, plants homozygous for lpcat2 and heterozygous for lpcat1 in the tgd1 background showed reduced levels of PC and triacylglycerols (TAG) and alterations in their fatty acid profiles. We further showed that disruption of ROD1 in tgd1 resulted in changes in fatty acid composition of PC and TAG, decreased leaf TAG content and reduced seedling growth. Together, our results reveal a critical role of LPCATs and ROD1 in maintaining cellular lipid homeostasis under conditions, in which fatty acid production largely exceeds the cellular demand for membrane lipid synthesis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Homeostase , Metabolismo dos Lipídeos , Triglicerídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Fosfatidilcolinas/metabolismo , Ácidos Graxos/metabolismo , Mutação , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Diacilglicerol Colinofosfotransferase/genética , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas de Membrana TransportadorasRESUMO
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid triacylglycerol is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
RESUMO
Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.
Assuntos
Acanthaceae , Ácidos Graxos Monoinsaturados , Proteínas de Plantas , Estearoil-CoA Dessaturase , Acanthaceae/metabolismo , Proteína de Transporte de Acila/metabolismo , Evolução Molecular , Ácidos Graxos Monoinsaturados/metabolismo , Mutagênese , Óleos de Plantas/química , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Estearoil-CoA Dessaturase/análise , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismoRESUMO
Camelina (Camelina sativa L.), a hexaploid member of the Brassicaceae family, is an emerging oilseed crop being developed to meet the increasing demand for plant oils as biofuel feedstocks. In other Brassicas, high oil content can be associated with a yellow seed phenotype, which is unknown for camelina. We sought to create yellow seed camelina using CRISPR/Cas9 technology to disrupt its Transparent Testa 8 (TT8) transcription factor genes and to evaluate the resulting seed phenotype. We identified three TT8 genes, one in each of the three camelina subgenomes, and obtained independent CsTT8 lines containing frameshift edits. Disruption of TT8 caused seed coat colour to change from brown to yellow reflecting their reduced flavonoid accumulation of up to 44%, and the loss of a well-organized seed coat mucilage layer. Transcriptomic analysis of CsTT8-edited seeds revealed significantly increased expression of the lipid-related transcription factors LEC1, LEC2, FUS3, and WRI1 and their downstream fatty acid synthesis-related targets. These changes caused metabolic remodelling with increased fatty acid synthesis rates and corresponding increases in total fatty acid (TFA) accumulation from 32.4% to as high as 38.0% of seed weight, and TAG yield by more than 21% without significant changes in starch or protein levels compared to parental line. These data highlight the effectiveness of CRISPR in creating novel enhanced-oil germplasm in camelina. The resulting lines may directly contribute to future net-zero carbon energy production or be combined with other traits to produce desired lipid-derived bioproducts at high yields.
Assuntos
Brassicaceae , Sistemas CRISPR-Cas , Óleos de Plantas , Sementes , Sementes/genética , Sementes/metabolismo , Sistemas CRISPR-Cas/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Edição de Genes/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
Triacylglycerols (TAG), accumulate within lipid droplets (LD), predominantly surrounded by OLEOSINs (OLE), that protect TAG from hydrolysis. We tested the hypothesis that identifying and removing degradation signals from OLE would promote its abundance, preventing TAG degradation and enhancing TAG accumulation. We tested whether mutating potential ubiquitin-conjugation sites in a previously reported improved Sesamum indicum OLE (SiO) variant, o3-3 Cys-OLE (SiCO herein), would stabilize it and increase its lipogenic potential. SiCOv1 was created by replacing all five lysines in SiCO with arginines. Separately, six cysteine residues within SiCO were deleted to create SiCOv2. SiCOv1 and SiCOv2 mutations were combined to create SiCOv3. Transient expression of SiCOv3 in Nicotiana benthamiana increased TAG by two-fold relative to SiCO. Constitutive expression of SiCOv3 or SiCOv5, containing the five predominant TAG-increasing mutations from SiCOv3, in Arabidopsis along with mouse DGAT2 (mD) increased TAG accumulation by 54% in leaves and 13% in seeds compared with control lines coexpressing SiCO and mD. Lipid synthesis rates increased, consistent with an increase in lipid sink strength that sequesters newly synthesized TAG, thereby relieving the constitutive BADC-dependent inhibition of ACCase reported for WT Arabidopsis. These OLE variants represent novel factors for potentially increasing TAG accumulation in a variety of oil crops.
Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Sementes , Sesamum , Triglicerídeos , Triglicerídeos/metabolismo , Sementes/genética , Sementes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sesamum/genética , Sesamum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Genes de PlantasRESUMO
Triacylglycerol (TAG) is amongst the most energy dense storage form of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and -independent pathways catalyzed by diacylglycerol:acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
RESUMO
BACKGROUND: Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS: To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS: Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.
Assuntos
Araceae , Transcriptoma , Glutamina/genética , Nitratos/metabolismo , Araceae/genética , Nitrogênio/metabolismoRESUMO
Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Araceae , Animais , Camundongos , Triglicerídeos/metabolismo , Lipídeos , Ácidos Graxos/metabolismo , Arabidopsis/genética , Araceae/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genéticaRESUMO
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , LipídeosRESUMO
Over 15 families of aquatic plants are known to use a strategy of developmental switching upon environmental stress to produce dormant propagules called turions. However, few molecular details for turion biology have been elucidated due to the difficulties in isolating high-quality nucleic acids from this tissue. We successfully developed a new protocol to isolate high-quality transcripts and carried out RNA-seq analysis of mature turions from the Greater Duckweed Spirodela polyrhiza. Comparison of turion transcriptomes to that of fronds, the actively growing leaf-like tissue, were carried out. Bioinformatic analysis of high confidence, differentially expressed transcripts between frond and mature turion tissues revealed major pathways related to stress tolerance, starch and lipid metabolism, and dormancy that are mobilized to reprogram frond meristems for turion differentiation. We identified the key genes that are likely to drive starch and lipid accumulation during turion formation, as well as those in pathways for starch and lipid utilization upon turion germination. Comparison of genome-wide cytosine methylation levels also revealed evidence for epigenetic changes in the formation of turion tissues. Similarities between turions and seeds provide evidence that key regulators for seed maturation and germination were retooled for their function in turion biology.
Assuntos
Araceae , Germinação , Germinação/genética , Araceae/genética , Genômica , Amido/metabolismo , Lipídeos , Dormência de Plantas/genéticaRESUMO
Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.
Assuntos
Acanthaceae/genética , Acanthaceae/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Mössbauer spectroscopy provides significant insights into the electronic structure and environment of the metal centers. Herein, we investigate the electronic structures of a set of nonheme diiron complexes by evaluating two key parameters pertaining to Mössbauer spectroscopy, namely, the isomer shift (δ) and quadrupole splitting (|ΔEQ|), using different levels of density functional theory (DFT). The diiron systems investigated here span diverse oxidation states, bridging motifs, and spin coupling patterns, which present a challenging case for theoretical predictions. We demonstrate that the combination of B97-D3/def2-TZVP is an efficient approach in modeling both the δ and |ΔEQ| values with high accuracy for the representative nonheme diiron complexes. We also show that δ is accurately predicted irrespective of the choice of approximate density functional while the |ΔEQ| is sensitive to the level of theory employed. Further investigation shows that the present methodology assessed using synthetic nonheme diiron complexes could be extended to nonheme diiron enzyme active sites, featuring both ferromagnetic and antiferromagnetic coupling between the iron centers.
RESUMO
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Assuntos
Enzimas/metabolismo , Lipídeos de Membrana/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Células Vegetais , Proteínas de Plantas/metabolismo , Triglicerídeos/metabolismoRESUMO
BACKGROUND: The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. RESULTS: Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson's correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. CONCLUSIONS: This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocombustíveis , Biomassa , Hidrolases de Éster Carboxílico/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Engenharia Metabólica , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharum/metabolismo , Triglicerídeos/metabolismoRESUMO
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Hidrolases de Éster Carboxílico , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipase/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Ciclização de Substratos , Açúcares/metabolismo , Fatores de Transcrição , Triglicerídeos/metabolismoRESUMO
Hundreds of naturally occurring specialized fatty acids (FAs) have potential as desirable chemical feedstocks if they could be produced at large scale by crop plants; however, transgenic expression of their biosynthetic genes has generally been accompanied by dramatic reductions in oil yield. For example, expression of castor (Ricinus communis) FA hydroxylase (FAH) in the Arabidopsis thaliana FA elongation mutant fae1 resulted in a 50% reduction of FA synthesis rate that was attributed to inhibition of acetyl-CoA carboxylase (ACCase) by an undefined mechanism. Here, we tested the hypothesis that the ricinoleic acid-dependent decrease in ACCase activity is mediated by biotin attachment domain-containing (BADC) proteins. BADCs are inactive homologs of biotin carboxy carrier protein that lack a biotin cofactor and can inhibit ACCase. Arabidopsis contains three BADC genes. To reduce expression levels of BADC1 and BADC3 in fae1/FAH plants, a homozygous badc1,3/fae1/FAH line was created. The rate of FA synthesis in badc1,3/fae1/FAH seeds doubled relative to fae1/FAH, restoring it to fae1 levels, increasing both native FA and HFA accumulation. Total FA per seed, seed oil content, and seed yield per plant all increased in badc1,3/fae1/FAH, to 5.8 µg, 37%, and 162 mg, respectively, relative to 4.9 µg, 33%, and 126 mg, respectively, for fae1/FAH. Transcript levels of FA synthesis-related genes, including those encoding ACCase subunits, did not significantly differ between badc1,3/fae1/FAH and fae1/FAH. These results demonstrate that BADC1 and BADC3 mediate ricinoleic acid-dependent inhibition of FA synthesis. We propose that BADC-mediated FAS inhibition as a general mechanism that limits FA accumulation in specialized FA-accumulating seeds.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biotina/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de PlantasRESUMO
We recently generated oilcane, a metabolically engineered sugarcane with hyper-accumulation of energy dense triacylglycerol in vegetative tissues. Refinement of this strategy in high biomass crops like sugarcane may result in elevated lipid yields that exceed traditional oilseed crops for biodiesel production. This is the first report of agronomic performance, stable co-expression of lipogenic factors, and TAG accumulation in transgenic sugarcane under field conditions. Co-expression of WRI1; DGAT1, OLE1, and RNAi suppression of PXA1 was stable during the 2-year field evaluation and resulted in TAG accumulation up to 4.4% of leaf DW. This TAG accumulation was 70-fold higher than in non-transgenic sugarcane and more than 2-fold higher than previously reported for the same line under greenhouse conditions. TAG accumulation correlated highest with the expression of WRI1. However, constitutive expression of WRI1 was negatively correlated with biomass accumulation. Transgenic lines without WRI1 expression accumulated TAG up to 1.6% of leaf DW and displayed no biomass yield penalty in the plant cane. These findings confirm sugarcane as a promising platform for the production of vegetative lipids and will be used to inform strategies to maximize future biomass and lipid yields. The main conclusion is that constitutive expression of WRI1 in combination with additional lipogenic factors (DGAT1-2, OLE1, PXA1) in sugarcane under field conditions leads to hyper-accumulation of TAG and reduces biomass yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01333-5.
RESUMO
The plant acyl-acyl carrier protein (ACP) desaturases are a family of soluble enzymes that convert saturated fatty acyl-ACPs into their cis-monounsaturated equivalents in an oxygen-dependent reaction. These enzymes play a key role in biosynthesis of monounsaturated fatty acids in plants. ACPs are central proteins in fatty acid biosynthesis that deliver acyl chains to desaturases. They have been reported to show a varying degree of local dynamics and structural variability depending on the acyl chain size. It has been suggested that substrate-specific changes in ACP structure and dynamics have a crucial impact on the desaturase enzymatic activity. Using molecular dynamics simulations, we investigated the intrinsic solution structure and dynamics of ACP from spinach with four different acyl chains: capric (C10), myristic (C14), palmitic (C16), and stearic (C18) acids. We found that the fatty acids can adopt two distinct structural binding motifs, which feature different binding free energies and influence the ACP dynamics in a different manner. Docking simulations of ACP to castor Δ9-desaturase and ivy Δ4-desaturase suggest that ACP desaturase interactions could lead to a preferential selection between the motifs.
Assuntos
Proteína de Transporte de Acila , Spinacia oleracea , Ácidos Graxos , Ácidos Graxos MonoinsaturadosRESUMO
BACKGROUND: Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes. RESULTS: In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble. CONCLUSIONS: Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from: http://bioinfolab.unl.edu/emlab/consemble/ .
Assuntos
Genoma , Transcriptoma , ConsensoRESUMO
Furan fatty acids (FuFAs), characterized by a central furan moiety, are widely dispersed in nature, but their biosynthetic origins are not clear. A new study from Lemke et al employs a full court press of genetics, genomics, biochemical, and advanced analytical techniques to dissect the biosynthetic pathway of mono- and dimethyl FuFAs and their intermediates in two related bacteria. These findings lay the foundation both for detailed study of these novel enzymes and for gaining further insights into FuFA functions.