Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 137(25): 2705-2715, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29915097

RESUMO

BACKGROUND: Potentially lethal cardiac channelopathies/cardiomyopathies may underlie a substantial portion of sudden unexplained death in the young (SUDY). The whole-exome molecular autopsy represents the latest approach to postmortem genetic testing for SUDY. However, proper variant adjudication in the setting of SUDY can be challenging. METHODS: From January 2012 through December 2013, 25 consecutive cases of SUDY from 1 to 40 years of age (average age at death 27±5.7 years; 13 white, 12 black) from Cook County, Illinois, were referred after a negative (n=16) or equivocal (n=9) conventional autopsy. A whole-exome molecular autopsy with analysis of 99 sudden death-susceptibility genes was performed. The predicted pathogenicity of ultrarare, nonsynonymous variants was determined using the American College of Medical Genetics guidelines. RESULTS: Overall, 27 ultrarare nonsynonymous variants were seen in 16/25 (64%) victims of SUDY. Among black individuals, 9/12 (75%) had an ultrarare nonsynonymous variant compared with 7/13 (54%) white individuals. Of the 27 variants, 10 were considered pathogenic or likely pathogenic in 7/25 (28%) individuals in accordance with the American College of Medical Genetics guidelines. Pathogenic/likely pathogenic variants were identified in 5/16 (31%) of autopsy-negative cases and in 2/6 (33%) victims of SUDY with equivocal findings of cardiomyopathy. Overall, 6 pathogenic/likely pathogenic variants in 4/25 (16%) cases were congruent with the phenotypic findings at autopsy and therefore considered clinically actionable. CONCLUSIONS: Whole-exome molecular autopsy with gene-specific surveillance is an effective approach for the detection of potential pathogenic variants in SUDY cases. However, systematic variant adjudication is crucial to ensure accurate and proper care for surviving family members.


Assuntos
Autopsia/métodos , Canalopatias/genética , Canalopatias/mortalidade , Morte Súbita Cardíaca/epidemiologia , Sequenciamento do Exoma , Patologia Molecular , Adolescente , Adulto , Causas de Morte , Canalopatias/patologia , Morte Súbita Cardíaca/patologia , Feminino , Predisposição Genética para Doença , Humanos , Illinois/epidemiologia , Masculino , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Risco , Adulto Jovem
2.
Circ Cardiovasc Genet ; 10(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28986455

RESUMO

BACKGROUND: WEMA (Whole-Exome Molecular Autopsy) and surveillance of cardiac channelopathy and cardiomyopathy genes represents the latest molecular autopsy for sudden death in the young (SDY). To date, the majority of WEMA has been performed on the SDY case only. METHODS AND RESULTS: We performed whole-exome sequencing and nucleotide-level coverage analysis on 28 SDY cases (18.4±7.8 years) and their parents to determine the inheritance patterns of ultrarare, nonsynonymous variants in 99 sudden death-susceptibility genes. Nonsynonymous variants were adjudicated using the American College of Medical Genetics guidelines. Overall, 17 sudden death-susceptibility gene variants were identified in 12 of 28 (43%) SDY cases. On the basis of the American College of Medical Genetics guidelines, 6 of 28 (21%) cases had a pathogenic or likely pathogenic nonsynonymous variant with 3 (50%) being de novo. Two nonsynonymous variants would not have been elevated to likely pathogenic status without knowing their de novo status. Whole-exome sequencing reached a read depth of 10× across 90% of nucleotides within sudden death-susceptibility genes in 100% of parental exomes from fresh blood draw, compared with only 82% of autopsy-sourced SDY exomes. CONCLUSIONS: An SDY-parent, trio-based WEMA may be an effective way of elucidating a monogenic cause of death and bringing clarity to otherwise ambiguous variants. If other studies confirm this relatively high rate of SDY cases stemming from de novo mutations, then the WEMA should become even more cost-effective given that the decedent's first-degree relatives should only need minimal cardiological evaluation. In addition, autopsy-sourced DNA demonstrated strikingly lower whole-exome sequencing coverage than DNA from fresh blood draw.


Assuntos
Morte Súbita Cardíaca , Exoma , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Adulto , Autopsia , Criança , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa