Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
3.
Circ Res ; 127(3): 335-353, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32336197

RESUMO

RATIONALE: Regression of atherosclerosis is an important clinical goal; however, the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, yet the numbers of these immunosuppressive cells decrease with disease progression, and whether they contribute to atherosclerosis regression is not known. OBJECTIVE: We investigated the roles of Tregs in the resolution of atherosclerotic inflammation, tissue remodeling, and plaque contraction during atherosclerosis regression. METHODS AND RESULTS: Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. Single-cell RNA-sequencing of plaque immune cells revealed that unlike Tregs from progressing plaques that expressed markers of natural Tregs derived from the thymus, Tregs in regressing plaques lacked Nrp1 expression, suggesting that they are induced in the periphery during lipid-lowering therapy. To test whether Tregs are required for resolution of atherosclerotic inflammation and plaque regression, Tregs were depleted using CD25 monoclonal antibody in atherosclerotic mice during apolipoprotein B antisense oligonucleotide-mediated lipid lowering. Morphometric analyses revealed that Treg depletion blocked plaque remodeling and contraction, and impaired hallmarks of inflammation resolution, including dampening of the T helper 1 response, alternative activation of macrophages, efferocytosis, and upregulation of specialized proresolving lipid mediators. CONCLUSIONS: Our data establish essential roles for Tregs in resolving atherosclerotic cardiovascular disease and provide mechanistic insight into the pathways governing plaque remodeling and regression of disease.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Placa Aterosclerótica , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos/farmacologia , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/patologia , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Knockout para ApoE , Neuropilina-1/genética , Neuropilina-1/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
5.
Front Immunol ; 15: 1457010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380993

RESUMO

Nrf2 is a master transcriptional regulator of a number of genes involved in the adaptive response to oxidative stress. Among the genes upregulated by Nrf2, heme oxygenase-1 (HO-1) has received significant attention, given that the products of HO-1-induced heme catabolism have well established antioxidant and anti-inflammatory properties. This is evidenced in numerous models of inflammatory and autoimmune disease whereby induction of HO-1 expression or administration of tolerable amounts of HO-1 reaction products can ameliorate disease symptoms. Unsurprisingly, Nrf2 and HO-1 are now considered viable drug targets for a number of conditions. In recent years, the term 'inflammaging' has been used to describe the low-grade chronic inflammation observed in aging/aged cells. Increased oxidative stress is also a key factor associated with aging and there is convincing evidence that Nrf2, not only declines with age, but that Nrf2 and HO-1 can reduce cellular senescence and the senescence-associated secretory phenotype (SASP) which is now considered an underlying driver of age-related inflammatory disease. In this review, we describe the role of oxidative stress in 'inflammaging' and highlight the potential anti-aging properties of the Nrf2-HO-1 system. We also highlight established and newly emerging Nrf2 activators and their therapeutic application in age-related disease.


Assuntos
Envelhecimento , Heme Oxigenase-1 , Inflamação , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Inflamação/metabolismo , Inflamação/imunologia , Animais , Envelhecimento/imunologia , Senescência Celular , Transdução de Sinais
6.
Acta Biomater ; 160: 311-321, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754270

RESUMO

Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.


Assuntos
Durapatita , Macrófagos , Durapatita/farmacologia , Tamanho da Partícula , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Metaboloma , Ativação de Macrófagos
7.
Adv Mater ; 35(23): e2207877, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36994935

RESUMO

Patients diagnosed with osteosarcoma undergo extensive surgical intervention and chemotherapy resulting in dismal prognosis and compromised quality of life owing to poor bone regeneration, which is further compromised with chemotherapy delivery. This study aims to investigate if localized delivery of miR-29b-which is shown to promote bone formation by inducing osteoblast differentiation and also to suppress prostate and cervical tumor growth-can suppress osteosarcoma tumors whilst simultaneously normalizing the dysregulation of bone homeostasis caused by osteosarcoma. Thus, the therapeutic potential of microRNA (miR)-29b is studied to promote bone remodeling in an orthotopic model of osteosarcoma (rather than in bone defect models using healthy mice), and in the context of chemotherapy, that is clinically relevant. A formulation of miR-29b:nanoparticles are developed that are delivered via a hyaluronic-based hydrogel to enable local and sustained release of the therapy and to study the potential of attenuating tumor growth whilst normalizing bone homeostasis. It is found that when miR-29b is delivered along with systemic chemotherapy, compared to chemotherapy alone, the therapy provided a significant decrease in tumor burden, an increase in mouse survival, and a significant decrease in osteolysis thereby normalizing the dysregulation of bone lysis activity caused by the tumor.


Assuntos
Neoplasias Ósseas , MicroRNAs , Nanopartículas , Osteólise , Osteossarcoma , Masculino , Camundongos , Animais , Qualidade de Vida , MicroRNAs/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/patologia , Osteólise/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia
8.
Exp Biol Med (Maywood) ; 247(24): 2192-2200, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36511089

RESUMO

Dysregulated metabolism has long been recognized as a feature of many metabolic disorders. However, recent studies demonstrating that metabolic reprogramming occurs in immune cells have led to a growing interest in the relationship between metabolic rewiring and immune-mediated disease pathogeneses. It is clear now that immune cell subsets engage in different metabolic pathways depending on their activation and/or maturation state. As a result, it may be possible to modulate metabolic reprogramming for clinical benefit. In this review, we provide an overview of immune cell metabolism with focus on endogenous drivers of metabolic reprogramming given their link to a number of immune-mediated disorders.


Assuntos
Metabolismo Energético , Redes e Vias Metabólicas
9.
Atherosclerosis ; 352: 35-45, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667162

RESUMO

BACKGROUND AND AIMS: Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function. METHODS AND RESULTS: Primary human macrophages were treated with cholesterol crystals and expression of M1 (CXCL9, CXCL10) and M2-associated (MRC1, CCL13) macrophage markers, alarmins, and inflammatory cytokines were assessed either by real-time PCR or ELISA. Cholesterol crystal-induced changes in glycolytic markers were determined using real-time PCR and western blotting, while changes in cellular respiration and mitochondrial dynamics were examined via Seahorse analysis, Fluorescence Lifetime Imaging Microscopy (FLIM) and confocal microscopy. Treatment of macrophages with cholesterol crystals upregulated mRNA levels of CXCL9 and CXCL10, while concomitantly downregulating expression of MRC1 and CCL13. Cholesterol crystal--treated macrophages also exhibited a significant shift in metabolism to favour glycolysis, accompanied by the expression of key glycolytic markers GLUT1, Hexokinase 2, HIF1α, GAPDH and PFKFB3. Furthermore, we show that these effects are mediated upstream by the glycolytic enzyme, PKM2, and that direct inhibition of glycolysis or PKM2 nuclear localisation leads to a significant reduction in cholesterol crystal-induced inflammatory readouts. CONCLUSIONS: This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.


Assuntos
Aterosclerose , Ativação de Macrófagos , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo
10.
Acta Biomater ; 133: 208-221, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657453

RESUMO

Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.


Assuntos
Imunidade Inata , Regeneração , Linfócitos , Macrófagos , Medicina Regenerativa
11.
Cell Rep ; 36(10): 109595, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496250

RESUMO

Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Estresse Fisiológico/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/metabolismo
12.
Nat Med ; 26(9): 1452-1458, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661390

RESUMO

Disruption of systemic homeostasis by either chronic or acute stressors, such as obesity1 or surgery2, alters cancer pathogenesis. Patients with cancer, particularly those with breast cancer, can be at increased risk of cardiovascular disease due to treatment toxicity and changes in lifestyle behaviors3-5. While elevated risk and incidence of cardiovascular events in breast cancer is well established, whether such events impact cancer pathogenesis is not known. Here we show that myocardial infarction (MI) accelerates breast cancer outgrowth and cancer-specific mortality in mice and humans. In mouse models of breast cancer, MI epigenetically reprogrammed Ly6Chi monocytes in the bone marrow reservoir to an immunosuppressive phenotype that was maintained at the transcriptional level in monocytes in both the circulation and tumor. In parallel, MI increased circulating Ly6Chi monocyte levels and recruitment to tumors and depletion of these cells abrogated MI-induced tumor growth. Furthermore, patients with early-stage breast cancer who experienced cardiovascular events after cancer diagnosis had increased risk of recurrence and cancer-specific death. These preclinical and clinical results demonstrate that MI induces alterations in systemic homeostasis, triggering cross-disease communication that accelerates breast cancer.


Assuntos
Neoplasias da Mama/patologia , Monócitos/imunologia , Infarto do Miocárdio/patologia , Animais , Antígenos Ly/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Estudos Retrospectivos
13.
Immunometabolism ; 1(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428465

RESUMO

Macrophages accumulate prominently in the visceral adipose tissue (VAT) of obese humans and high fat diet (HFD) fed mice, and this is linked to insulin resistance and type II diabetes. While the mechanisms regulating macrophage recruitment in obesity have been delineated, the signals directing macrophage persistence in VAT are poorly understood. We previously showed that the neuroimmune guidance cue netrin-1 is expressed in the VAT of obese mice and humans, where it promotes macrophage accumulation. To better understand the source of netrin-1 and its effects on adipose tissue macrophage (ATM) fate and function in obesity, we generated mice with myeloid-specific deletion of netrin-1 (Ntn1 fl/fl LysMCre +/-; Ntn1Δmac). Interestingly, Ntn1Δmac mice showed a modest decrease in HFD-induced adiposity and adipocyte size, in the absence of changes in food intake or leptin, that was accompanied by an increase in markers of adipocyte beiging (Prdm16, UCP-1). Using single cell RNA-seq, combined with conventional histological and flow cytometry techniques, we show that myeloid-specific deletion of netrin-1 caused a 50% attrition of ATMs in HFD-fed mice, particularly of the resident macrophage subset, and altered the phenotype of residual ATMs to enhance lipid handling. Pseudotime analysis of single cell transcriptomes showed that in the absence of netrin-1, macrophages in the obese VAT underwent a phenotypic switch with the majority of ATMs activating a program of genes specialized in lipid handling, including fatty acid uptake and intracellular transport, lipid droplet formation and lipolysis, and regulation of lipid localization. Furthermore, Ntn1Δmac macrophages had reduced expression of genes involved in arachidonic acid metabolism, and targeted LCMS/MS metabololipidomics analysis revealed decreases in proinflammatory eicosanoids (5-HETE, 6-trans LTB4, TXB2, PGD2) in the obese VAT. Collectively, our data show that targeted deletion of netrin-1 in macrophages reprograms the ATM phenotype in obesity, leading to reduced adipose inflammation, and improved lipid handling and metabolic function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa