Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 8274-8285, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859943

RESUMO

We propose a photonic time-stretched analog-to-digital converter (PTS-ADC) based on dispersion-tunable chirped fiber Bragg grating (CFBG), by demonstrating a economical ADC system with seven different stretch factors. The stretch factors are tunable by changing the dispersion of CFBG, in order to obtain different sampling points. Accordingly, the total sampling rate of the system can be improved. Only a single channel is required to increase the sampling rate and achieve the effect of multi-channel sampling. Finally, seven groups of different stretch factors ranging from 1.882 to 2.206 are obtained, which are equivalent to seven groups of different sampling points. We successfully recover the input radio frequency (RF) signals with frequencies from 2 GHz to 10 GHz. In addition, the sampling points are increased by 14.4 times and the equivalent sampling rate is increased to 288 GSa/s. The proposed scheme is suitable for commercial microwave radar systems, which can obtain a much higher sampling rate at a low cost.

2.
Opt Express ; 31(22): 36940-36951, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017833

RESUMO

We propose a Vernier effect-based sensor for temperature and salinity measurements. This sensor utilizes the correlation speckle pattern generated by spatial multimode interference and has undergone testing to validate its effectiveness. The speckle demodulation method is used to solve the problem of inconsistent envelope measurement when tracking with different upper and lower envelopes. The device consists of two Fabry Perot interferometers (FPIs) created by connecting hole core fiber (HCF) and erbium-doped fiber (EDF) in series. The speckle image produced by the interferometers is analyzed using the Zero means normalized cross-correlation (ZNCC) technique. The ZNCC value demonstrates a linear relationship with salinity and temperature, allowing for the measurement of these parameters. The sensor exhibits a temperature detection sensitivity of -0.0224 /°C and a salinity detection sensitivity of -0.0439/%. The sensor offers several advantageous features, including its compact size, low-cost manufacturing, high sensitivity, stability, and convenient reflection measurements. These characteristics make it a valuable tool for various applications. The proposed Vernier effect-based temperature and salinity sensor shows great potential for simultaneous monitoring and measurement of temperature and salinity in environments such as marine settings or industrial processes where accurate control of these parameters is crucial.

3.
Opt Lett ; 48(4): 1048-1051, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791007

RESUMO

An effective orthogonal signal generation method for heterodyne-detection-based phase-sensitive optical time-domain reflectometer systems is proposed to accelerate the phase demodulation process. The demodulation principle is based on the spatial phase shifting technique. By exploiting the relative phase difference between adjacent spatial sampling channels, the orthogonal signal is easily obtained from basic algebra calculations. The simulation and experimental results showed that the proposed method achieved >100% computation speed improvement compared with the conventional methods, with a slight trade-off in phase demodulation performance. Therefore, the proposed method is potentially beneficial for the distributed acoustic sensing technology for reducing the computation complexity of phase demodulation procedures.

4.
J Neurooncol ; 163(2): 313-325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195411

RESUMO

AIM: Effective biomarkers for estimating glioma prognosis are deficient. Canonically, caspase-3 acts as an "apoptosis executioner". However, its prognostic role in glioma and mechanistic effects on prognosis remain unclear. METHODS: With glioma tissue microarrays, the prognostic roles of cleaved caspase-3 and its association with angiogenesis were explored. Next, by analyzing the mRNA microarray data from the CGGA, the prognostic role of CASP3 expression and correlations between CASP3 and markers of glioma angiogenesis and proliferation were investigated. To biologically interpret the prognostic role of caspase-3 in glioma, the influence of caspase-3 on surrounding angiogenesis and glioma cell repopulation was investigated with an in vitro cell co-culture model, which comprises irradiated U87 cells and un-irradiated firefly luciferase (Fluc)-labeled HUVEC (HUVEC-Fluc) or U87 (U87-Fluc) cells. The over-expressed dominant-negative caspase-3 was used to suppress normal caspase-3 activity. RESULTS: High levels of cleaved caspase-3 expression were associated with poor survival outcomes in glioma patients. Higher microvessel density was observed in patients with high levels of cleaved caspase-3 expression. By mining the microarray data in CGGA, it was revealed that higher CASP3 expression was found in glioma patients with lower Karnofsky Performance score, higher WHO grade, malignant histological subtype, wild-type IDH. Higher CASP3 expression indicated a worse survival rate in glioma patients. Patients with high CASP3 expression and negative IDH mutation showed the worst survival rate. Positive correlations were found between CASP3 and markers of tumor angiogenesis and proliferation. Subsequent data based on an in vitro cell co-culture model revealed that caspase-3 in irradiated glioma cells mediated pro-angiogenic and repopulation-promoting effects via regulating COX-2 signaling. With glioma tissue microarrays, high levels of COX-2 expression showed inferior survival outcomes in glioma patients. Glioma patients with high levels of cleaved caspase-3 and COX-2 expression showed the worst survival outcomes. CONCLUSION: This study innovatively identified an unfavorable prognostic role of caspase-3 in glioma. The pro-angiogenic and repopulation-prompting effects of caspase-3/COX-2 signaling may explain its unfavorable prognostic role and offer novel insights into therapy sensitization and curative effect prediction of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2 , Glioma/patologia , Prognóstico
5.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571597

RESUMO

A fiber speckle sensor (FSS) based on a tapered multimode fiber (TMMF) has been developed to measure liquid analyte refractive index (RI) in this work. By the lateral and axial offset of input light into TMMF, several high-order modes are excited in TMMF, and the speckle pattern is spatially modulated, which affects an asymmetrical speckle pattern with a random intensity distribution at the output of TMMF. When the TMMF is immersed in the liquid analyte with RI variation, it influences the guided modes, as well as the mode interference, in TMMF. A digital image correlations method with zero-mean normalized cross-correlation coefficient is explored to digitize the speckle image differences, analyzing the RI variation. It is found that the lateral- and axial-offsets-induced speckle sensor can enhance the RI sensitivity from 6.41 to 19.52 RIU-1 compared to the one without offset. The developed TMMF speckle sensor shows an RI resolution of 5.84 × 10-5 over a linear response range of 1.3164 to 1.3588 at 1550 nm. The experimental results indicate the FSS provides a simple, efficient, and economic approach to RI sensing, which exhibits an enormous potential in the image-based ocean-sensing application.

6.
Opt Express ; 30(16): 29117-29127, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299094

RESUMO

The multi-parameter sensing is in great demand for comprehensive recognition in various application scenarios. We demonstrate a distributed optical fiber sensor (DOFS) for simultaneous vibration and temperature/strain sensing based on the integration of Brillouin optical time-domain reflectometry (BOTDR) and phase-sensitive optical time-domain reflectometry (Φ-OTDR). A double heterodyne detection configuration is set up to receive the Rayleigh scattering and Brillouin scattering simultaneously, which can enhance the signal-to-noise ratio (SNR) and reduce the polarization fading noise for the Brillouin signal at the same time. Most components in the setup are multiplexed for the Brillouin and Rayleigh signals. The overall cost is much lower than the summation of the BOTDR and the Φ-OTDR setup. In experiments, the setup is capable of measuring temperature change near the end of the 49.9 km long fiber with 0.381 MHz measurement uncertainty and restore different vibration patterns correctly by demodulating the phase variation of Rayleigh scattering signal, owning a 20 m spatial resolution. The sampling rate of the vibration measurement is 1.8 kHz, and the achieved dynamic strain resolution is 1.235 nɛ/√Hz with 100 Hz vibration.

7.
Opt Express ; 30(4): 5402-5413, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209503

RESUMO

Curvature measurement plays an important role in structural health monitoring, robot-pose measuring, etc. High-resolution curvature measurement is highly demanded. In this paper, an optical curvature sensor with high resolution based on in-fiber Mach-Zehnder interferometer (MZI) and microwave photonic filter (MPF) is proposed and experimentally demonstrated. The in-fiber MZI is constructed with a ring-core fiber (RCF) which is fusion spliced between two coreless fibers (CLFs). The structure of CLF-RCF-CLF is then sandwiched between two segments of single-mode fiber (SMF), making the whole interferometer structure of SMF-CLF-RCF-CLF-SMF. The operating principle is that different curvatures will cause the variations of the interference spectrum of MZI due to elastic-optic effect, and then the variations are converted into the frequency-shift of the MPF. The factors affecting the visibility of the interference spectrum are researched. A preliminary exploration of the multiplexing demodulation for the in-fiber-MZIs is also investigated and discussed, which is for the first time to the best of our knowledge, holding great potential to pave the way for constructing the sensing network composed of interferometric sensors. The curvature measurement sensitivity is -147.634 MHz/m-1, and the resolution is 6.774 × 10-6 m-1 which is the highest value up to now.

8.
Opt Express ; 30(6): 10096-10109, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299420

RESUMO

Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been proposed for distributed vibration sensing purpose over recent years. Emerging applications, including seismic and hydroacoustic wave detection, demand accurate low-frequency vibration reconstruction capability. We propose to use the direct-detection Φ-OTDR configuration to achieve quantitative demodulation of external low-frequency vibrations by phase-shifted dual-pulse probes. Simultaneous pulsing and phase shifting modulation is realized with a single acousto-optic modulator to generate such probes, relaxing the need for an additional optical phase modulator. In the experiments, vibrations with frequency as low as 0.5 Hz are successfully reconstructed with 10 m spatial resolution and 35 dB signal-to-noise ratio. Excellent linearity and repeatability are demonstrated between the optical phase demodulation results and the applied vibration amplitudes. The proposed method is capable of quantitative demodulation of low-frequency vibrations with a cost-effective system configuration and high computation efficiency, showing potential for commercial applications of distributed seismic or hydroacoustic wave acquisition.

9.
Opt Lett ; 47(14): 3379-3382, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838684

RESUMO

Phase-sensitive optical time-domain reflectometry (Φ-OTDR) based on heterodyne detection is widely used for its simple structure and high signal-to-noise ratio (SNR). However, the large amount of raw data of Φ-OTDR places a heavy burden on the storage device and also limits the transferability of the data. In this Letter, we propose an ultra-low sampling resolution technique to solve the data storage problem in heterodyne Φ-OTDR. Experimental results show that the optical phase variations induced by external vibrations can be successfully demodulated from the 1-bit-resolution raw data, and a vibration SNR of 58.03 dB is achieved. In addition, this work also reveals that a data acquisition device with extremely low sampling resolution is sufficient for heterodyne Φ-OTDR, signifying that the cost of the system can be further decreased.

10.
Altern Ther Health Med ; 28(2): 89-95, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936992

RESUMO

OBJECTIVE: This study aimed to assess whether a 5-year follow-up education intervention changed the risk for fragility fractures and increased bone mineral density (BMD) in elderly women with osteoporosis. METHODS: This randomized controlled trial included 104 women who were hospitalized or visited a specialist for osteoporosis care at Sichuan Translational Medicine Research Hospital in China from October 2013 to June 2014. The patients were randomly assigned to either an education intervention group (n = 52) or a control group (n = 52). The intervention was conducted by an endocrinologist who provided the intervention group with personized recommendations. All participants were followed for 5 years. RESULTS: Compared with the control group, the patients in the intervention group had a lower risk for fragility fracture, lower pain score, higher BMD at the greater trochanter of the femur, total hip and the first lumbar vertebra, together with higher compliance with anti-osteoporosis drug regimens and higher intake of vitamin D supplements (all P <.05). After adjustment for history of fracture, calcium consumption, age and body mass index (BMI), the association of change in BMD and pain score and the medication possession ratio (MPR) of anti-osteoporosis drugs were both significantly different (P < .05, P < .001, respectively). In subgroup analysis by past fractures, patients who experienced post-fractures were more likely to experience refracture (P < .05). CONCLUSIONS: The personalized education intervention by endocrinologists can significantly increase the BMD of the greater trochanter of the femur and reduce pain scores in elderly women with osteoporosis, suggesting that this education intervention may serve as an important addition to standard anti-osteoporosis treatment.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Fraturas por Osteoporose , Idoso , Densidade Óssea , Suplementos Nutricionais , Feminino , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Fraturas por Osteoporose/prevenção & controle
11.
Sensors (Basel) ; 22(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501899

RESUMO

We report an ytterbium (Yb) doped fiber Mach Zehnder interferometer (MZI) based on the up-taper fiber structure in a fiber ring laser (FRL) cavity. Different from the traditional FRL sensing system, in which additional filters are required, the designed structure simultaneously acts as a filter, sensor and gain medium. Furthermore, thanks to the high thermal-optical coefficient of Yb doped fiber, the temperature sensitivity of 0.261 nm/°C can be achieved in the range of 10-50 °C. In addition, benefiting from the unique characteristics of the laser system itself, the designed structure has a narrower linewidth (-0.2 nm) and a higher signal-to-noise ratio (SNR) (-40 dB) than the sensor system based on a broadband light source (BBS). Meanwhile, the refractive index (RI) response and stability of the system are measured. The RI sensitivity is up to 151 nm/RIU, and the wavelength fluctuation range within two hours is less than 0.2 nm. Therefore, the designed structure is expected to play a significant role in human life safety monitoring, aircraft engine temperature monitoring, etc.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Humanos , Itérbio , Refratometria , Lasers
12.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080845

RESUMO

Data storage is a problem that cannot be ignored in the long-term monitoring of a phase-sensitive optical time-domain reflectometry (Φ-OTDR) system. In this paper, we proposed a data-reduction approach for heterodyne Φ-OTDR using an ultra-low sampling resolution and undersampling techniques. The operation principles were demonstrated and experiments with different sensing configurations were carried out to verify the proposed method. The results showed that the vibration signal could be accurately reconstructed from the undersampled 1-bit data. A space saving ratio of 98.75% was achieved by converting 128 MB of data (corresponding to 268.44 ms of sensing time) to 1.6 MB. The proposed method led to a potentially new data-reduction approach for heterodyne Φ-OTDR, which also provided economical guidance for the selection of the data-acquisition device.

13.
Sensors (Basel) ; 22(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366231

RESUMO

This paper presented a new kind of salinity and temperature dual-parameter sensor based on a fiber ring laser (FRL) with tapered side-hole fiber (SHF) embedded in a Sagnac interferometer. The sensing structure is majorly composed of tapered SHF located in the middle of SHF inside the Sagnac interferometer loop structure. The influences of the SHF's diameters of different tapered in the Sagnac interferometer loop on the FRL sensing system are studied. The presence of air holes in the SHF makes the cladding mode easier to excite, and the interaction between the cladding mode with its surroundings is enhanced, thus having higher salinity sensitivity. Besides, the unique advantages of high resolution, narrower linewidth, and high signal-to-noise ratio (SNR) of fiber laser make the measurement results more accurate. In this experiment, the SHF with different taper diameters was made, and it was found that reducing the diameter of the taper waist diameter could further improve the salinity sensitivity. When the waist diameter was 9.70 µm, the maximum salinity sensitivity of 0.2867 nm/‱ was achieved. Temperature sensing experiments were also carried out. The maximum temperature sensitivity of the FRL sensing system was -0.3041 nm/°C at the temperature range from 20 to 30 °C. The sensor has the characteristics of easy manufacture, good selectivity, and high sensitivity, proving the feasibility of simultaneous measurement of seawater salinity and temperature.

14.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271143

RESUMO

This paper proposes a real-time multi-class disturbance detection algorithm based on YOLO for distributed fiber vibration sensing. The algorithm achieves real-time detection of event location and classification on external intrusions sensed by distributed optical fiber sensing system (DOFS) based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). We conducted data collection under perimeter security scenarios and acquired five types of events with a total of 5787 samples. The data is used as a spatial-temporal sensing image in the training of our proposed YOLO-based model (You Only Look Once-based method). Our scheme uses the Darknet53 network to simplify the traditional two-step object detection into a one-step process, using one network structure for both event localization and classification, thus improving the detection speed to achieve real-time operation. Compared with the traditional Fast-RCNN (Fast Region-CNN) and Faster-RCNN (Faster Region-CNN) algorithms, our scheme can achieve 22.83 frames per second (FPS) while maintaining high accuracy (96.14%), which is 44.90 times faster than Fast-RCNN and 3.79 times faster than Faster-RCNN. It achieves real-time operation for locating and classifying intrusion events with continuously recorded sensing data. Experimental results have demonstrated that this scheme provides a solution to real-time, multi-class external intrusion events detection and classification for the Φ-OTDR-based DOFS in practical applications.


Assuntos
Algoritmos
15.
Opt Express ; 29(20): 31324-31336, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615227

RESUMO

In this paper, we have proposed and experimentally demonstrated a multiplexed sensing interrogation technique based on a flexibly switchable multi-passband RF filter with a polarization maintaining fiber (PMF) Solc-Sagnac loop. A high-order Solc-Sagnac loop can be used as a spectrum slicer as well as sensing heads, and a multi-passband microwave photonic filter (MPF) can be achieved together with a dispersive medium. Environmental parameter variations will cause a frequency shift of the corresponding passband of the MPF, so by employing only one Sagnac loop, it is possible to monitor several environmental parameters simultaneously. In this article, we have demonstrated and analyzed the performance of the flexibly switchable multi-passband MPF by using a second-order Solc-Sagnac loop. To demonstrate the temperature sensing capabilities of our interrogation system, we have applied temperature changes individually to Sensor Head 1 (L P M F 1 ≈0.97m) only, Sensor Head 2 (L P M F 2 ≈2.97m) only, and both Sensor Head 1 and 2 in the experiment. By monitoring frequency shift of the MPF's passbands, the sensitivities for Sensor Head 1 and Sensor Head 2 have been estimated to be -0.275 ± 0.011 MHz/℃ and -0.811 ± 0.013 MHz/℃ respectively, which show a good sensing linearity and stability. By utilizing the longer length of the sensing PMF, higher sensitivity can be achieved. By using Solc-Sagnac loop with higher order, more sensors can be multiplexed.

16.
Opt Express ; 29(2): 2564-2576, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726449

RESUMO

Based on the nonuniformly spaced microwave photonic delay-line filter technology, a new design of a generic optical fiber sensor network interrogation platform is proposed and demonstrated. Sensing information from different types of optical sensors embedded in filter taps is converted into the variations of delay time and amplitude of each filter tap individually. Information to be measured can be decoded from the complex temporal impulse response of the microwave photonic filter. As proof-of-concept, our proposed approach is verified by simulations and experimental demonstrations successfully. Four optical sensors of different types are simultaneously interrogated via inverse Fourier transform of the filter frequency response. The experiment results show good linearity between the variation of temporal impulse response and the variations of the twist, the lateral pressure, the transversal loading and the temperature. The sensitivity of the sensors in the proposed platform is -2.130×10-5 a.u/degree, 6.1039 ps/kPa, -1.9146×10-5 a.u/gram, and 5.1497 ps/°C, respectively. Compared to the conventional optical sensors interrogation system, the presented approach provides a centralized solution that works for different types of optical sensors and can be easily expanded to cover larger optical sensor networks.

17.
Opt Express ; 29(10): 14931-14940, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985204

RESUMO

A low-cost compressive sensing imaging (CSI) system based on spectrum-encoded time-stretch (SETS) structure involving cascaded Mach-Zehnder Interferometers (MZIs) for spectral domain random mixing (also known as the optical random pattern generator) is proposed and experimentally demonstrated. A proof-of-principle simulation and experiment is performed. A mode-locked laser with a repetition rate of 50MHz and low-cost cascaded MZIs as the key devices enable fast CSI system. Data compression ratio from 6% to 25% are obtained using proposed CSI based SETS system. The proposed design solves the big data issue in the traditional time-stretch system. It has great potential in fast dynamic phenomena with low-cost and easy-access components.

18.
Appl Opt ; 60(12): 3474-3481, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33983254

RESUMO

This paper proposes a temperature sensor based on a side-hole fiber (SHF). The sensor is formed by single-mode fiber (SMF)-coreless fiber (CLF)-SHF-CLF-SMF fusion splicing. The SHF adopts the dislocation fusion splicing method to ensure that one air hole is exposed. Two different interferences form a superposition, making the response more sensitive. The experiment shows that the sensitivity during heating and cooling is 1.587 nm/°C and 1.681 nm/°C, respectively, in the temperature range of 25-45°C. The sensor has high temperature sensitivity, exhibits easy processing, is smaller in size, and has important research value for temperature monitoring in daily life and industrial production.

19.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919007

RESUMO

We demonstrate a new concept for an all-fiber inclinometer based on a tapered fiber Bragg grating (tFBG) in a fiber ring laser (FRL) with the capability of measuring the tilt angle and temperature simultaneously. The sensor performance is analyzed theoretically and investigated experimentally. The dependence of tilt angle on the spectral response in variable temperature conditions was measured. Two inclinometers with different lengths have been fabricated and characterized in FRL. The sensitivity is 0.583 dB/° and 0.849 dB/°, respectively, in the range of 0° to 90°. Thanks to the FRL system, narrow 3-dB bandwidth (<0.1 nm) and high optical signal-to-noise ratio (~60 dB) are achieved. The tFBG in the FRL system can be used for working as a temperature insensitive inclinometer. The results suggested that the proposed inclinometer has the advantages of compact size and convenient manufacture, enhancing its potential for application prospect.

20.
Opt Express ; 28(11): 16569-16578, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549476

RESUMO

In this work, a 45° tilted fiber grating (TFG) is used as a waveguide coupler for the development of a portable interrogation system to access remotely placed optical fiber sensors. The TFG is directly connected to a remote fiber sensor and serves as a highly efficient light coupler between the portable interrogation unit and the sensor. Variation of strain and temperatures are measured with a standard fiber Bragg grating (FBG) sensor, which serves as a remotely placed optical sensor. A light beam from the interrogation unit is coupled into the TFG by a system of lenses, mirrors and optical collimator and acted as the input of the FBG. Reflected light from the FBG sensor is coupled back to the interrogation unit via the same TFG. The TFG is being used as a receiver and transmitter of light and constituent the key part of the system to connect "light source to the optical sensor" and "optical sensor to detector." A successful demonstration of the developed system for strain and temperature sensing applications have been presented and discussed. Signal to noise ratio of the reflected light from the sensors was greater than ∼ 40 dB.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa