Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133769, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359758

RESUMO

The widespread use of Cd-based quantum dots (Cd-QDs) has led to their inevitable release into the environment, and the prevalent iron oxides and natural organic matter (NOM) are the key factors affecting the environmental behavior and fate of Cd-QDs. However, the impact of NOM adsorbed on iron oxides on the behavior of Cd-QDs with iron oxides and the mechanism of its interaction are not clear. In this study, two kinds of water-soluble QDs (CdSe QDs and core-shell CdSe/ZnS QDs) were selected to study the aggregation and adsorption behavior on goethite (Goe) and goethite-humic acid/fulvic acid composites (Goe-HA/FA). Aggregation kinetics and adsorption experiments between QDs and Goe(-HA/FA), characterization, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory calculations indicated that electrostatic interaction was the dominant force for QDs adsorption on Goe(-HA/FA). HA/FA changed the surface charge of Goe and increased the electrostatic repulsion and steric hindrance between the particles, which in turn inhibited the adsorption of QDs on Goe. Besides, unsubstituted aromatic carbons, carboxy carbons, and carbonyl carbons played an important role in the adsorption process, and chemisorption occurred between QDs and Goe(-HA/FA). Our findings are important for better assessing the transport, fate, and potential environmental impacts and risks of Cd-QDs in iron-rich environments.

2.
J Hazard Mater ; 477: 135275, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053062

RESUMO

The abundance of biodegradable microplastics (BMPs) is increasing in soil due to the widespread use of biodegradable plastics. However, the influence of BMPs on soil metal biogeochemistry, especially arsenic (As), under different water regimes is still unclear. In this study, we investigated the effects of two types of BMPs (PLA-MPs and PBAT-MPs) on As fractionation in two types of soils (black soil and fluvo-aquic soil) under three water regimes including drying (Dry), flooding (FL), and alternate wetting and drying (AWD). The results show that BMPs had limited indirect effects on As fractionation by altering soil properties, but had direct effects by adsorbing and releasing As during their degradation. Enzyme degradation experiments show that the degradation of PLA-MPs led to an increased desorption of 4.76 % for As(III) and 15.74 % for As(V). Synchrotron-based X-ray fluorescence (µ-XRF) combined with micro-X-ray absorption near edge structure (µ-XANES) analysis show that under Dry and AWD conditions, As on the BMPs primarily bind with Fe hydrated oxides in the form of As(V). Conversely, 71.57 % of As on PBAT-MP under FL conditions is in the form of As(III) and is primarily directly adsorbed onto its surface. This study highlights the role of BMPs in soil metal biogeochemistry.


Assuntos
Arsênio , Microplásticos , Poluentes do Solo , Síncrotrons , Arsênio/química , Arsênio/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Fracionamento Químico , Água/química , Solo/química , Biodegradação Ambiental , Plásticos Biodegradáveis/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa