Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 19(11): e1011791, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956169

RESUMO

Ehrlichia is Gram negative obligate intracellular bacterium that cause human monocytotropic ehrlichiosis (HME). HME is characterized by acute liver damage and inflammation that may progress to fatal toxic shock. We previously showed that fatal ehrlichiosis is due to deleterious activation of inflammasome pathways, which causes excessive inflammation and liver injury. Mammalian cells have developed mechanisms to control oxidative stress via regulation of nuclear factor erythroid 2 related 2 (NRF2) signaling. However, the contribution of NRF2 signaling to Ehrlichia-induced inflammasome activation and liver damage remains elusive. In this study, we investigated the contribution of NRF2 signaling in hepatocytes (HCs) to the pathogenesis of Ehrlichia-induced liver injury following infection with virulent Ixodes ovatus Ehrlichia (IOE, AKA E. japonica). Employing murine model of fatal ehrlichiosis, we found that virulent IOE inhibited NRF2 signaling in liver tissue of infected mice and in HCs as evidenced by downregulation of NRF2 expression, and downstream target GPX4, as well as decreased NRF2 nuclear translocation, a key step in NRF2 activation. This was associated with activation of non-canonical inflammasomes pathway marked by activation of caspase 11, accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Mechanistically, treatment of IOE-infected HCs with the antioxidant 3H-1,2-Dithiole-3-Thione (D3T), that induces NRF2 activation, attenuated oxidative stress and caspase 11 activation, as well as restored cell viability. Importantly, treatment of IOE-infected mice with D3T resulted in attenuated liver pathology, decreased inflammation, enhanced bacterial clearance, prolonged survival, and resistance to fatal ehrlichiosis. Our study reveals, for the first time, that targeting anti-oxidative signaling pathway is a key approach in the treatment of severe and potential Ehrlichia-induced acute liver injury and sepsis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ehrlichiose , Camundongos , Humanos , Animais , Ehrlichia , Antioxidantes , Fator 2 Relacionado a NF-E2/metabolismo , Inflamassomos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Ehrlichiose/microbiologia , Fígado/patologia , Caspases/metabolismo , Transdução de Sinais , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mamíferos
2.
Indian J Microbiol ; 57(1): 1-10, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28148975

RESUMO

Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.

3.
Front Genet ; 15: 1309175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725484

RESUMO

The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology has revolutionized field of cancer treatment. This review explores usage of CRISPR/Cas9 for editing and investigating genes involved in human carcinogenesis. It provides insights into the development of CRISPR as a genetic tool. Also, it explores recent developments and tools available in designing CRISPR/Cas9 systems for targeting oncogenic genes for cancer treatment. Further, we delve into an overview of cancer biology, highlighting key genetic alterations and signaling pathways whose deletion prevents malignancies. This fundamental knowledge enables a deeper understanding of how CRISPR/Cas9 can be tailored to address specific genetic aberrations and offer personalized therapeutic approaches. In this review, we showcase studies and preclinical trials that show the utility of CRISPR/Cas9 in disrupting oncogenic targets, modulating tumor microenvironment and increasing the efficiency of available anti treatments. It also provides insight into the use of CRISPR high throughput screens for cancer biomarker identifications and CRISPR based screening for drug discovery. In conclusion, this review offers an overview of exciting developments in engineering CRISPR/Cas9 therapeutics for cancer treatment and highlights the transformative potential of CRISPR for innovation and effective cancer treatments.

4.
Metabolites ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248866

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.

5.
Cells ; 12(22)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998332

RESUMO

Activating inflammatory caspases and releasing pro-inflammatory mediators are two essential functions of inflammasomes which are triggered in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The canonical inflammasome pathway involves the activation of inflammasome and its downstream pathway via the adaptor ASC protein, which causes caspase 1 activation and, eventually, the cleavage of pro-IL-1b and pro-IL-18. The non-canonical inflammasome pathway is induced upon detecting cytosolic lipopolysaccharide (LPS) by NLRP3 inflammasome in Gram-negative bacteria. The activation of NLRP3 triggers the cleavage of murine caspase 11 (human caspase 4 or caspase 5), which results in the formation of pores (via gasdermin) to cause pyroptosis. Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. This review aims to explore the significance of non-canonical inflammasomes in ehrlichiosis, and how the pathways involving caspases (with the exception of caspase 1) contribute to the pathophysiology of severe and fatal ehrlichiosis. Improving our understanding of the non-canonical inflammatory pathway that cause cell death and inflammation in ehrlichiosis will help the advancement of innovative therapeutic, preventative, and diagnostic approaches to the treatment of ehrlichiosis.


Assuntos
Ehrlichiose , Inflamassomos , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1 , Ehrlichiose/metabolismo , Ehrlichiose/patologia , Caspases/metabolismo , Inflamação , Piroptose
6.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174734

RESUMO

Autophagy is a cellular process that involves the cell breakdown and recycling of cellular components, such as old, damaged, or abnormal proteins, for important cellular functions including development, immune function, stress, and starvation [...].


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ehrlichia , Humanos , Autofagia , Fenômenos Fisiológicos Celulares
7.
Front Immunol ; 14: 1212167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022511

RESUMO

Hepatocytes play a crucial role in host response to infection. Ehrlichia is an obligate intracellular bacterium that causes potentially life-threatening human monocytic ehrlichiosis (HME) characterized by an initial liver injury followed by sepsis and multi-organ failure. We previously showed that infection with highly virulent Ehrlichia japonica (E. japonica) induces liver damage and fatal ehrlichiosis in mice via deleterious MyD88-dependent activation of CASP11 and inhibition of autophagy in macrophage. While macrophages are major target cells for Ehrlichia, the role of hepatocytes (HCs) in ehrlichiosis remains unclear. We investigated here the role of MyD88 signaling in HCs during infection with E. japonica using primary cells from wild-type (WT) and MyD88-/- mice, along with pharmacologic inhibitors of MyD88 in a murine HC cell line. Similar to macrophages, MyD88 signaling in infected HCs led to deleterious CASP11 activation, cleavage of Gasdermin D, secretion of high mobility group box 1, IL-6 production, and inflammatory cell death, while controlling bacterial replication. Unlike macrophages, MyD88 signaling in Ehrlichia-infected HCs attenuated CASP1 activation but activated CASP3. Mechanistically, active CASP1/canonical inflammasome pathway negatively regulated the activation of CASP3 in infected MyD88-/- HCs. Further, MyD88 promoted autophagy induction in HCs, which was surprisingly associated with the activation of the mammalian target of rapamycin complex 1 (mTORC1), a known negative regulator of autophagy. Pharmacologic blocking mTORC1 activation in E. japonica-infected WT, but not infected MyD88-/- HCs, resulted in significant induction of autophagy, suggesting that MyD88 promotes autophagy during Ehrlichia infection not only in an mTORC1-indpenedent manner, but also abrogates mTORC1-mediated inhibition of autophagy in HCs. In conclusion, this study demonstrates that hepatocyte-specific regulation of autophagy and inflammasome pathway via MyD88 is distinct than MyD88 signaling in macrophages during fatal ehrlichiosis. Understanding hepatocyte-specific signaling is critical for the development of new therapeutics against liver-targeting pathogens such as Ehrlichia.


Assuntos
Ehrlichiose , Inflamassomos , Animais , Humanos , Camundongos , Autofagia , Caspase 3/metabolismo , Ehrlichia , Ehrlichiose/microbiologia , Hepatócitos/metabolismo , Inflamassomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo
8.
Environ Sci Pollut Res Int ; 30(59): 123039-123054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980320

RESUMO

Plastic pollution has become a prominent and pressing environmental concern within the realm of pollution. In recent times, microplastics have entered our ecosystem, especially in freshwater. In the contemporary global landscape, there exists a mounting apprehension surrounding the manifold environmental and public health issues that have emerged as a result of the substantial accumulation of microplastics. The objective of the current study is to employ an enhanced grey prediction model in order to forecast global plastic production and microplastic emissions. This study compared the accuracy level of the four grey prediction models, namely, EGM (1,1, α, θ), DGM (1,1), EGM (1,1), and DGM (1,1, α) models, to evaluate the accuracy levels. As per the estimation of the study, DGM (1,1, α) was found to be more suitable with higher accuracy levels to predict microplastic emission. The EGM (1,1, α, θ) model has slightly better accuracy than the DGM (1,1, α) model in predicting global plastic production. Various accuracy measurement tools (MAPE and RMSE) were used to determine the model's efficiency. There has been a gradual growth in both plastic production and microplastic emission. The current study using the DGM (1,1, α) model predicted that microplastic emission would be 1,084,018 by 2030. The present study aims to provide valuable insights for policymakers in formulating effective strategies to address the complex issues arising from the release of microplastics into the environment and the continuous production of plastic materials.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Plásticos , Poluentes Químicos da Água/análise
9.
Cell Reprogram ; 23(5): 304-315, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597162

RESUMO

We examined the effects of treatment with pulsed electromagnetic fields (PEMFs) on cumulus cells and buffalo somatic cell nuclear transfer (SCNT) embryos. PEMF treatment (30 µT for 3 hours) of cumulus cells increased (p < 0.05) the relative cell viability and cell proliferation and the expression level of OCT4, NANOG, SOX2, P53, CCNB1, and GPX, but decreased (p < 0.05) that of DNMT1, DNMT3a, GSK3b, and BAX, whereas the expression level of DNMT3b, GLUT1, BCL2, CASPASE3, SOD1, and CATALASE was not affected. PEMF treatment of SCNT embryos at the beginning of in vitro culture increased (p < 0.05) the blastocyst rate (51.4% ± 1.36% vs. 42.8% ± 1.29%) and decreased (p < 0.01) the apoptotic index to the level in in vitro fertilization blastocysts, but did not significantly alter the total cell number and the inner cell mass:trophectoderm cell number ratio of blastocysts compared to the controls. PEMF treatment increased the expression level of NANOG, SOX2, CDX2, GLUT1, P53, and BCL2 and decreased that of BAX, CASPASE3, GSK3b, and HSP70, but not OCT4, DNMT1, DNMT3a, DNMT3b, HDAC1, and CCNB1 in blastocysts. It increased (p < 0.001) the global level of H3K27me3 but not H3K18ac. These results suggest that PEMF treatment of SCNT embryos improves their developmental competence, reduces the level of apoptosis, and alters the expression level of several important genes related to pluripotency, apoptosis, metabolism, and stress.


Assuntos
Campos Eletromagnéticos , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/efeitos da radiação , Epigênese Genética , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Técnicas de Transferência Nuclear , Animais , Apoptose , Búfalos , Proliferação de Células , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Células do Cúmulo/efeitos da radiação , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/efeitos da radiação , Fertilização in vitro , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa