Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(36): 17690-17695, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427515

RESUMO

Carbon dioxide (CO2) emissions from freshwater ecosystems are almost universally predicted to increase with climate warming. Glacier-fed rivers and lakes, however, differ critically from those in nonglacierized catchments in that they receive little terrestrial input of organic matter for decomposition and CO2 production, and transport large quantities of easily mobilized comminuted sediments available for carbonate and silicate weathering reactions that can consume atmospheric CO2 We used a whole-watershed approach, integrating concepts from glaciology and limnology, to conclusively show that certain glacier-fed freshwater ecosystems are important and previously overlooked annual CO2 sinks due to the overwhelming influence of these weathering reactions. Using the glacierized Lake Hazen watershed (Nunavut, Canada, 82°N) as a model system, we found that weathering reactions in the glacial rivers actively consumed CO2 up to 42 km downstream of glaciers, and cumulatively transformed the High Arctic's most voluminous lake into an important CO2 sink. In conjunction with data collected at other proglacial freshwater sites in Greenland and the Canadian Rockies, we suggest that CO2 consumption in proglacial freshwaters due to glacial melt-enhanced weathering is likely a globally relevant phenomenon, with potentially important implications for regional annual carbon budgets in glacierized watersheds.

2.
Nature ; 473(7347): 357-60, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21508960

RESUMO

Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

3.
J Mater Sci Mater Med ; 26(2): 83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25636972

RESUMO

Laser surface alloying is a powerful technique for improving the mechanical and chemical properties of engineering components. In this study, laser surface irradiation process employed in the surface modification off 316L stainless steel substrate using hydroxyapatite-titanium oxide to provide a composite ceramic layer for the suitability of applying this technology to improve the biocompatibility of medical alloys and implants. Fusion of the metal surface incorporating hydroxyapatite-titania ceramic particles using a 30 W Nd:YAG laser at different laser powers, 40, 50 and 70% power and a scan speed of 40 mm s(-1) was observed to adopt the optimum condition of ceramic deposition. Coatings were evaluated in terms of microstructure, surface morphology, composition biocompatibility using XRD, ATR-FTIR, SEM and EDS. Evaluation of the in vitro bioactivity by soaking the treated metal in SBF for 10 days showed the deposition of biomimetic apatite.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Aço Inoxidável/química , Titânio/química , Ligas/química , Cerâmica/química , Microanálise por Sonda Eletrônica , Técnicas In Vitro , Lasers de Estado Sólido , Teste de Materiais , Microscopia Eletrônica de Varredura , Próteses e Implantes , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
4.
Environ Sci Process Impacts ; 25(12): 2001-2014, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37856255

RESUMO

Organophosphate esters (OPEs) have been used as flame retardants, plasticizers, and anti-foaming agents over the past several decades. Of particular interest is the long range transport potential of OPEs given their ubiquitous detection in Arctic marine air. Here we report 19 OPE congeners in ice cores drilled on remote icefields and ice caps in the Canadian high Arctic. A multi-decadal temporal profile was constructed in the sectioned ice cores representing a time scale spanning the 1970s to 2014-16. In the Devon Ice Cap record, the annual total OPE (∑OPEs) depositional flux for all of 2014 was 81 µg m-2, with the profile dominated by triphenylphosphate (TPP, 9.4 µg m-2) and tris(2-chloroisopropyl) phosphate (TCPP, 42 µg m-2). Here, many OPEs displayed an exponentially increasing depositional flux including TCPP which had a doubling time of 4.1 ± 0.44 years. At the more northern site on Mt. Oxford icefield, the OPE fluxes were lower. Here, the annual ∑OPEs flux in 2016 was 5.3 µg m-2, dominated by TCPP (1.5 µg m-2) but also tris(2-butoxyethyl) phosphate (1.5 µg m-2 TBOEP). The temporal trend for halogenated OPEs in the Mt. Oxford icefield is bell-shaped, peaking in the mid-2000s. The observation of OPEs in remote Arctic ice cores demonstrates the cryosphere as a repository for these substances, and supports the potential for long-range transport of OPEs, likely associated with aerosol transport.


Assuntos
Retardadores de Chama , Organofosfatos , Monitoramento Ambiental , Retardadores de Chama/análise , Plastificantes , Canadá , Fosfatos
5.
Extremophiles ; 16(2): 255-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22241643

RESUMO

Microbial ecosystems beneath glaciers and ice sheets are thought to play an active role in regional and global carbon cycling. Subglacial sediments are assumed to be largely anoxic, and thus various pathways of organic carbon metabolism may occur here. We examine the abundance and diversity of prokaryotes in sediment beneath two glaciers (Lower Wright Glacier in Antarctica and Russell Glacier in Greenland) with different glaciation histories and thus with different organic carbon substrates. The total microbial abundance in the Lower Wright Glacier sediment, originating from young lacustrine sediment, was an order of magnitude higher (~8 × 10(6) cells per gram of wet sediment) than in Russell Glacier sediment (~9 × 10(5) cells g(-1)) that is of Holocene-aged soil origin. 4% of the microbes from the Russell Glacier sediment and 0.04-0.35% from Lower Wright Glacier were culturable at 10°C. The Lower Wright Glacier subglacial community was dominated by Proteobacteria, followed by Firmicutes. The Russell Glacier library was much less diverse and also dominated by Proteobacteria. Low numbers and diversity of both Euryarchaeota and Crenarchaeota were found in both sediments. The identified clones were related to bacteria with both aerobic and anaerobic metabolisms, indicating the presence of both oxic and anoxic conditions in the sediments.


Assuntos
Carbono/metabolismo , Camada de Gelo/microbiologia , Oxigênio/metabolismo , Biodiversidade , Ecossistema , Biblioteca Gênica , Genes Arqueais , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Groenlândia , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
6.
Environ Sci Technol ; 46(7): 3753-61, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22385100

RESUMO

Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.


Assuntos
Camada de Gelo/química , Espectroscopia de Ressonância Magnética/métodos , Compostos Orgânicos/análise , Prótons , Espectrometria de Fluorescência/métodos , Regiões Antárticas , Regiões Árticas , Análise Fatorial , Solubilidade
7.
Environ Sci Technol ; 45(11): 4710-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21542577

RESUMO

Dissolved organic matter (DOM) is ubiquitous in aquatic ecosystems and is derived from various inputs that control its turnover. Glaciers and ice sheets are the second largest water reservoir in the global hydrologic cycle, but little is known about glacial DOM composition or contributions to biogeochemical cycling. Here we employ SPR-W5-WATERGATE (1)H NMR spectroscopy to elucidate and quantify the chemical structures of DOM constituents in Antarctic glacial ice as they exist in their natural state (average DOC of 8 mg/L) without isolation or preconcentration. This Antarctic glacial DOM is predominantly composed of a mixture of small recognizable molecules differing from DOM in marine, lacustrine, and other terrestrial environments. The major constituents detected in three distinct types of glacial ice include lactic and formic acid, free amino acids, and a mixture of simple sugars and amino sugars with concentrations that vary between ice types. The detection of free amino acid and amino sugar monomer components of peptidoglycan within the ice suggests that Antarctic glacial DOM likely originates from in situ microbial activity. As these constituents are normally considered to be biologically labile (fast cycling) in nonglacial environments, accelerated glacier melt and runoff may result in a flux of nutrients into adjacent ecosystems.


Assuntos
Camada de Gelo/química , Compostos Orgânicos/análise , Regiões Antárticas , Espectroscopia de Ressonância Magnética
8.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155957

RESUMO

Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition-MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings ("hatch spacing") (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm-1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase.

9.
Sci Adv ; 5(3): eaau8507, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30891498

RESUMO

The Canadian Arctic Archipelago contains >300 glaciers that terminate in the ocean, but little is known about changes in their frontal positions in response to recent changes in the ocean-climate system. Here, we examine changes in glacier frontal positions since the 1950s and investigate the relative influence of oceanic temperature versus atmospheric temperature. Over 94% of glaciers retreated between 1958 and 2015, with a region-wide trend of gradual retreat before ~2000, followed by a fivefold increase in retreat rates up to 2015. Retreat patterns show no correlation with changes in subsurface ocean temperatures, in clear contrast to the dominance of ocean forcing in western Greenland and elsewhere. Rather, significant correlations with surface melt indicate that increased atmospheric temperature has been the primary driver of the acceleration in marine-terminating glacier frontal retreat in this region.

10.
Sci Adv ; 4(4): eaar4353, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651462

RESUMO

Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than -10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.

11.
Nat Commun ; 9(1): 1290, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599477

RESUMO

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic's largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed's glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.

12.
Mater Sci Eng C Mater Biol Appl ; 71: 690-697, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987762

RESUMO

Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods.


Assuntos
Fibroblastos/citologia , Lasers , Poliuretanos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Interferometria , Microscopia Eletrônica de Varredura , Propriedades de Superfície
13.
Science ; 340(6134): 852-7, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23687045

RESUMO

Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003-2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was -259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.


Assuntos
Camada de Gelo , Água do Mar , Regiões Árticas , Groenlândia
14.
Environ Sci Technol ; 41(18): 6433-41, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17948790

RESUMO

We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute


Assuntos
Compostos de Metilmercúrio/análise , Água do Mar/análise , Neve/química , Regiões Árticas , Canadá , Monitoramento Ambiental/métodos , Geografia , Compostos de Metilmercúrio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
15.
Science ; 317(5834): 111-4, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17615355

RESUMO

It is difficult to obtain fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years. The results provide direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.


Assuntos
Aminoácidos/análise , DNA/análise , Ecossistema , Camada de Gelo/química , Invertebrados , Plantas , Árvores , Aminoácidos/história , Aminoácidos/isolamento & purificação , Animais , Teorema de Bayes , Clima , DNA/história , DNA/isolamento & purificação , Fósseis , Geografia , Groenlândia , História Antiga , Invertebrados/classificação , Invertebrados/genética , Plantas/classificação , Plantas/genética , Reação em Cadeia da Polimerase , Tempo
16.
Appl Environ Microbiol ; 72(9): 5838-45, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957202

RESUMO

Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.


Assuntos
Bactérias/isolamento & purificação , Camada de Gelo/microbiologia , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Carbono/análise , Ecossistema , Genes Bacterianos , Concentração de Íons de Hidrogênio , Camada de Gelo/química , Nitratos/análise , Nunavut , Polimorfismo de Fragmento de Restrição , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Sulfatos/análise , Água/análise
17.
Environ Sci Technol ; 40(24): 7590-6, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17256499

RESUMO

Mercury (Hg) in some Arctic marine mammals has increased to levels that may be toxic to Northern peoples consuming them as traditional food. It has been suggested that sunlight-induced atmospheric reactions called springtime atmospheric Hg depletion events (AMDEs) result in the loading of -150-300 tons of Hg to the Canadian Arctic archipelago each spring and that AMDEs are the ultimate source of Hg to Arctic foodwebs. AMDEs result from the oxidation of gaseous elemental Hg0 (GEM) in Arctic atmospheres to reactive gaseous Hg (RGM) and particulate Hg (pHg), both of which fall out of the atmosphere to snowpacks. We studied the springtime cycling of Hg between air and snowpacks near Churchill, Manitoba, for 2 years to determine the net input of Hg to Hudson Bay from AMDEs. In 2004, we monitored atmospheric concentrations of GEM, pHg, and RGM while simultaneously measuring concentrations of total Hg (THg) in surface snow collected over the sea ice on Hudson Bay. During numerous springtime AMDEs, concentrations of THg in surface snow increased, often to over 60 ng/L, demonstrating that AMDEs resulted in deposition of oxidized Hg (Hg(II)) to snowpacks. However, immediatelyfollowing AMDEs, average concentrations of THg in snow declined drastically from between 67.8+/-7.7 ng/L during AMDEs to only 4.25+/-1.85 ng/L four or more days following them. In 2003, we measured THg in surface snow collected daily over the sea ice and total gaseous Hg (TGM) concentrations in the interstitial airspaces of snowpacks. When concentrations of THg in the surface snow decreased, concentrations of TGM in interstitial airspaces of the snowpack increased sharply from between approximately 1.4-3.4 ng/m(3) to between approximately 20-150 ng/m(3), suggesting thatthere was a reduction of deposited Hg(II) to GEM, which then diffused out of snowpacks. At snowmelt in both 2003 and 2004, average concentrations of THg in meltwater collected over Hudson Bay were only 4.04+/-2.01 ng/L. Using concentrations of THg in meltwater and snow water equivalent, we estimated a net springtime loading of only 2.1+/-1.7 mg/ha of Hg to Hudson Bay from AMDEs, indicating that only a small portion of the Hg(II) deposited during AMDEs enters Hudosn Bay each spring.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Neve/química , Manitoba
18.
Environ Sci Technol ; 40(16): 4909-15, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16955885

RESUMO

We present analyses of the concentrations of organochlorine (OC) contaminants (including organochlorine pesticides and PCBs) in snow, snowmelt, and runoff in glacier and snowmelt fed streams at Bow Lake, Alberta in two contrasting hydrological years (1997 and 1998). The study investigates the variability in OC burdens in snow across the catchment, the elution of OCs from the snowpack, and the relationship between OC concentrations in streams and the annual snowpack. Snowpacks in forested sites were thinner and had lower OC concentrations than snowpacks in open or sparsely vegetated sites. The first snowmelt samples exhibited very high contaminant concentrations relative to the snowpack, and even the more hydrophobic compounds (Dieldrin, DDTs, and PCBs) were highly concentrated in meltwater. Interannual changes in the mean OC concentrations in streams did not reflect year-to-year changes in the snowpack contaminant concentrations. The results indicate that the extent of glacial ice melt may be more important than mean snowpack burdens as a control on OC concentrations in runoff in glacial catchments.


Assuntos
Cloro/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Alberta , Meio Ambiente , Água Doce , Gelo , Hidrocarbonetos Policíclicos Aromáticos , Neve , Temperatura , Abastecimento de Água
19.
Appl Environ Microbiol ; 71(11): 6986-97, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16269734

RESUMO

Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.


Assuntos
Bactérias/metabolismo , Ecossistema , Água Doce/microbiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Sulfato de Cálcio/química , Carbonatos/metabolismo , Clonagem Molecular , Água Doce/química , Camada de Gelo/química , Immunoblotting , Dados de Sequência Molecular , Oxirredução , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfetos/metabolismo
20.
Environ Sci Technol ; 39(8): 2686-701, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15884366

RESUMO

We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield nearthe North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHgCl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the High Arctic.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Neve/química , Poluentes Atmosféricos/química , Regiões Árticas , Canadá , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Mercúrio/química , Fotoquímica , Estudos de Amostragem , Estações do Ano , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa