RESUMO
Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.
RESUMO
AIM: The purpose of this study is to assess the in vitro antimicrobial and anti-biofilm effects of the anti-protozoal agent tafenoquine (TAF) on Enterococcus and elucidate its underlying mode of action. METHODS AND RESULTS: The present work investigated the susceptibility of TAF on 3 type strains and 11 clinical isolates of enterococci. The results indicated that TAF exhibited powerful antimicrobial activity against both of Enterococcus faecalis and Enterococcus faecium with minimum inhibitory and bactericidal concentrations ranging from 8 to 16 µg ml-1. Meanwhile, biofilm inhibition and eradication assays showed that TAF exhibited potent anti-biofilm activity against E. faecalis ATCC 29212 and E. faecium ATCC 19434. Ultra-microscopic observations revealed significant changes in bacterial morphology and structure caused by TAF, particularly for the disruption of plasma membrane. Mechanistic investigations also revealed that TAF altered both membrane permeability and potential while also impacting adenosine triphosphate production as well as reactive oxygen species generation. In addition, no detectable cytotoxicity of TAF on human cells was observed at concentrations near the minimal inhibitory concentration. CONCLUSIONS: In summary, this study confirmed that TAF could effectively inhibit Enterococcus as well as its biofilm formation.
Assuntos
Aminoquinolinas , Anti-Infecciosos , Enterococcus faecium , Humanos , Enterococcus , Antibacterianos/farmacologia , Enterococcus faecalis , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Luminescent organic radicals, especially those with photoactivated circularly polarized luminescence (CPL) features, hold great significance for cutting-edge optoelectronic applications, but their development still remains a challenge. In this study, we propose a novel strategy to achieve photoactivated CPL radicals by bonding two phosphine centers within an axial chiral system, yielding a compound of R/S-5,5-bis(diphenylphosphino)-4,4'-bibenzo[d][1,3]dioxole (R/S-BDP). The photoactivated R/S-BDP molecules in polymer matrix display a robust quantum yield of 19.8 % and a dissymmetry factor (glum) of 1.2×10-4, marking this work as the first example of photoactivated CPL radicals. Furthermore, the glum is improved to 1.0×10-2 by using a liquid crystal as host. Experimental and theoretical analyses reveal that R/S-BDP molecules, endowed with double phosphine cores in axial chirality, offer a direct way for intramolecular electron transfer upon photoirradiation. This leads to the generation of radical ionic pairs, which subsequently trigger the donor-acceptor arrangement through intermolecular electron transfer, thereby resulting in stable radical emission. The extended photoactivated BDP-F exhibits a remarkably high quantum efficiency of 57.8%. Ultimately, the distinctive photo-responsive CPL radical luminescence has been successfully used for information displays and anti-counterfeiting.
RESUMO
There has been an explosion in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) because of the indiscriminate use of antibiotics. In this study, we repurposed hexestrol (HXS) as an antibacterial agent to fight planktonic and biofilm-related MRSA infections. HXS is a nonsteroidal synthetic estrogen that targets estrogen receptors (ERα and ERß) and has been used as a hormonal antineoplastic agent. In our work, the minimum inhibitory concentrations (MICs) were determined using the antimicrobial susceptibility of MSSA and MRSA strains. Anti-biofilm activity was evaluated using biofilm inhibition and eradication assays. Biofilm-related genes were analyzed with or without HXS treatment using RTqPCR analysis of S. aureus. HXS was tested using the checkerboard dilution assay to identify antibiotics that may have synergistic effects. Measurement of ATP and detection of ATPase allowed the determination of bacterial energy metabolism. As shown in the results, HXS showed effective antimicrobial activity against S. aureus, including both type strains and clinical isolations, with MICs of 16 µg/mL. Sub-HXS strongly inhibited the adhesion of S. aureus. The content of extracellular polymeric substances (EPS) and the relative transcription levels of eno, sacC, clfA, pls and fnbpB were reduced after HXS treatment. HXS showed antibacterial effects against S. aureus and synergistic activity with aminoglycosides by directly interfering with cellular energy metabolism. HXS inhibits adhesion and biofilm formation and eradicates biofilms formed by MRSA by reducing the expression of related genes. Furthermore, HXS increases the susceptibility of aminoglycosides against MRSA. In conclusion, HXS is a repurposed drug that may be a promising therapeutic option for MRSA infection.
Assuntos
Hexestrol , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Hexestrol/farmacologia , Staphylococcus aureus , Reposicionamento de Medicamentos , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Biofilmes , Testes de Sensibilidade MicrobianaRESUMO
AIMS: Extensively drug-resistant (XDR) Acinetobacter baumannii poses a severe threat to public health due to its ability to form biofilms and persister cells, which contributes to critical drug resistance and refractory device-associated infections. A novel strategy to alleviate such an emergency is to identify promising compounds that restore the antimicrobial susceptibility of existing antibiotics against refractory infections. METHODS AND RESULTS: Here, we found a significant synergy among three combinations of SPR741, clarithromycin and erythromycin with a potent antimicrobial activity against XDR A. baumannii (SPR741/CLA/E at 8/10/10 µg ml-1 for XDR AB1069 and at 10/16/10 µg ml-1 for XDR AB1208, respectively). Moreover, the triple combination therapy exhibits a significant antipersister and antibiofilm effect against XDR strains. Mechanistic studies demonstrate that SPR741 may promote intracellular accumulation of macrolides by permeabilizing the outer membrane as well as disrupting membrane potential and further enhance the quorum sensing inhibition activity of the macrolides against XDR A. baumannii and its biofilms. In addition, the triple combination of SPR741 with clarithromycin and erythromycin was not easy to induce resistance in A. baumannii and had effective antimicrobial activity with low toxicity in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: Collectively, these results reveal the potential of SPR741 in combination with clarithromycin and erythromycin as a clinical therapy for refractory infections caused by XDR A. baumannii.
Assuntos
Acinetobacter baumannii , Claritromicina , Claritromicina/farmacologia , Eritromicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade MicrobianaRESUMO
Human immunodeficiency virus type 1 (HIV-1) is the primary epidemic strain in China. Its genome contains two regulatory genes (tat and rev), three structural genes (gag, pol, and env), and four accessory genes (nef, vpr, vpu, and vif). Long terminal repeats (LTRs) in thegenome regulate integration, duplication, and expression of viral gene. The permissibility of HIV-1 infection hinges on the host cell cycle status. HIV-1 replicates by exploiting various cellular processes via upregulation or downregulation of specific cellular proteins that also control viral pathogenesis. For example, HIV-1 regulates the life cycle of p53, which in turn contributes significantly to HIV-1 pathogenesis. In this article, we review the interaction between HIV-1-associated factors and p53, providing information on their regulatory and molecular mechanisms, hinting possible directions for further research.
Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Proteína Supressora de Tumor p53/genética , China , Genes ViraisRESUMO
OBJECTIVES: Staphylococcus epidermidis (S. epidermidis) is a Gram-positive opportunistic pathogen that often causes hospital infections. With the abuse of antibiotics, the resistance of S. epidermidis gradually increases, and drug repurposing has become a research hotspot in the treating of refractory drug-resistant bacterial infections. This study aims to study the antimicrobial and antibiofilm effects of simeprevir, an antiviral hepatitis drug, on S. epidermidis in vitro. METHODS: The micro-dilution assay was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of simeprevir against S. epidermidis. Crystal violet staining assay was used to detect the biofilm inhibitory effect of simeprevir. The antimicrobial activity of simeprevir against S. epidermidis and its biofilm were explored by SYTO9/PI fluorescent staining. The combined effect between simeprevir and gentamycin was assessed by checkerboard assay and was confirmed by time-inhibition assay. RESULTS: Simeprevir showed significant antimicrobial effects against S. epidermidis type strains and clinical isolates with the MIC and MBC at 2-16 µg/mL and 4-32 µg/mL, respectively. The antimicrobial effects of simeprevir were confirmed by SYTO9/PI staining. Simeprevir at MIC could significantly inhibit and break the biofilm on cover slides. Similarly, simeprevir also significantly inhibit the biofilm formation on the surface of urine catheters either in TSB [from (0.700±0.020) to (0.050±0.004)] (t=54.03, P<0.001), or horse serum [from (1.00±0.02) to (0.13±0.01)] (t=82.78, P<0.001). Synergistic antimicrobial effect was found between simeprevir and gentamycin against S. epidermidis with the fractional inhibitory concentration index of 0.5. CONCLUSIONS: Simeprevir shows antimicrobial effect and anti-biofilm activities against S. epidermidis.
Assuntos
Infecção Hospitalar , Simeprevir , Humanos , Antivirais , Antibacterianos/farmacologia , GentamicinasRESUMO
Staphylococcus aureus is a major human pathogen, and the appearance of methicillin-resistant S. aureus (MRSA) renders S. aureus infections more challenging to treat. Therefore, new antimicrobial drugs are urgently needed to combat MRSA infections. Drug repurposing is an effective and feasible strategy. Here, we reported that the clinically approved anti-hepatitis C virus drug simeprevir had strong antibacterial activity against MRSA, with a minimum inhibitory concentration of 2-8 µg/mL. Simeprevir did not easily induce in vitro resistance. In addition, simeprevir significantly prevented S. aureus biofilm formation. Furthermore, simeprevir displayed limited toxicity in in vitro and in vivo assays. Moreover, simeprevir showed synergistic antimicrobial effects against both type and clinical strains of S. aureus. Simeprevir combined with gentamicin effectively reduced the bacterial burden in an MRSA-infected subcutaneous abscess mouse model. Results from a series of experiments, including membrane permeability assay, membrane potential assay, intracellular ATP level assay, and electron microscope observation, demonstrated that the action of simeprevir may be by disrupting bacterial cell membranes. Collectively, these results demonstrated the potential of simeprevir as an antimicrobial agent for the treatment of MRSA infections. KEY POINTS: ⢠Simeprevir showed strong antibacterial activity against MRSA. ⢠The antibacterial mechanism of simeprevir was mediated by membrane disruption and intracellular ATP depletion. ⢠In vitro and in vivo synergistic antimicrobial efficacy between simeprevir and gentamicin was found.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Trifosfato de Adenosina , Animais , Antibacterianos/farmacologia , Bactérias , Gentamicinas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Simeprevir/farmacologia , Simeprevir/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureusRESUMO
Due to the increasing rate of antibiotic resistance and the emergence of persister cells of Gram-negative pathogenic bacteria, the development of new antibacterial agents is urgently needed to deal with this problem. Our results indicated that both newly identified small molecule STK-35 and its derivative STK-66 exhibited effective antibacterial properties against a variety of Gram-negative pathogens including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. The minimal inhibitory concentrations and minimal bactericidal concentrations ranges were 0·0625-8 µg ml-1 and 0·125-16 µg ml-1 , respectively, while no haemolytic activity and mammalian cell cytotoxicity were observed. The time-killing assays showed STK-35/66 had strong bactericidal activity against Gram-negative pathogens. STK-35/66 also showed different degrees of synergistic antibacterial activity with conventional antibiotics and exhibited persister cells killing activity. Moreover, STK-35/66 effectively eradicated the pre-formed biofilms of P. aeruginosa and A. baumannii. In addition, STK-35/66 significantly increased the survival rate of E. coli infected mice and induced a decrease in bacterial load of the peritonitis model. In nutshell, these results suggested that STK-35/66 possessed antimicrobial activity against Gram-negative pathogenic bacteria in vitro and in vivo, which could be considered as potential substitutes for the treatment of Gram-negative pathogenic infections after further structure optimization.
Assuntos
Antibacterianos , Escherichia coli , Animais , Antibacterianos/química , Bactérias Gram-Negativas , Mamíferos , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosaRESUMO
Staphylococcus epidermidis is a common cause of nosocomial infections, and readily adheres to medical apparatus to form biofilms consisting of highly resistant persister cells. Owing to the refractory infections caused by S. epidermidis biofilms and persisters in immunosuppressed patients, it is crucial to develop new antimicrobials. In the present study, we analyzed the antimicrobial effects of the thrombopoietin receptor agonist eltrombopag (EP) against S. epidermidis planktonic cells, biofilms, and persister cells. EP was significantly toxic to S. epidermidis with the minimal inhibitory concentration of 8 µg/ml, and effectively inhibited the biofilms and persisters in a strain-dependent manner. In addition, EP was only mildly toxic to mammalian cells after 12 to 24 h treatment. It also partially synergized with vancomycin against S. epidermidis, which enhanced its antimicrobial effects and reduced its toxicity to mammalian cells. Taken together, EP is a potential antibiotic for treating refractory infections caused by S. epidermidis.
Assuntos
Preparações Farmacêuticas , Staphylococcus epidermidis , Animais , Antibacterianos/farmacologia , Benzoatos , Biofilmes , Reposicionamento de Medicamentos , Humanos , Hidrazinas , Testes de Sensibilidade Microbiana , PirazóisRESUMO
Pseudomonas aeruginosa is a ubiquitous bacterium found in hospitals and the surrounding environment. The ability of P. aeruginosa to form biofilms confers high-level resistance to antibiotics, and the persister cells formed in the presence of high antibacterial drug concentrations make P. aeruginosa-related infections more refractory. Further, there rarely is an effective antimicrobial alternative when biofilm- and persister cell-targeting treatment fails. Using a high-throughput screening assay, we previously identified fluoroquinolones sitafloxacin, prulifloxacin, and tosufloxacin as well as aminoglycoside sisomicin among FDA-approved drugs with significant bactericidal activity against P. aeruginosa. In addition, in our current study, these antibiotics exhibited an effective time- and dose-dependent eradication effects against the preformed biofilms of P. aeruginosa at the concentrations of 2-4 µM. These agents also exhibited bactericidal efficacy against CCCP-induced P. aeruginosa persister cells with the viable cell count decreased from 9.14 log10 CFU/mL to 6.15 (sitafloxacin), 7.59 (prulifloxacin), 4.27 (tosufloxacin), and 6.17 (sisomicin) log10 CFU/mL, respectively, following 4 h of treatment. Furthermore, sisomicin was also effective against conventional antibiotics induced persister cells in a time-dependent manner within 24 h. In addition, we confirmed the in vivo anti-biofilm efficacy of the identified antibiotics in a subcutaneous implantation biofilm-related infection model. Tosufloxacin exhibited the greatest in vivo bactericidal activity against P. aeruginosa biofilms with a reduction of 4.54 ΔLog10 CFU/mL compared to the vehicle group, followed by prulifloxacin, sitafloxacin, and sisomicin. Taken together, our results indicate that sitafloxacin, prulifloxacin, tosufloxacin, and sisomicin have great potential as alternatives for the treatment of refractory infections caused by P. aeruginosa biofilms and persister cells.
Assuntos
Anti-Infecciosos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Dioxolanos , Reposicionamento de Medicamentos , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Naftiridinas , Piperazinas , SisomicinaRESUMO
OBJECTIVES: Staphylococcus epidermidis is one of the most common Gram-positive cocci in nosocomial infection, which could adhere to the surface of medical apparatus and causes biofilm-related infections. In the present study, we aim to explore the antimicrobial effects of GH12 and SAAP-148 against Staphylococcus epidermidis. METHODS: Micro-dilution methods were used to detect the minimal inhibitory/bactericidal concentration of peptides on Staphylococcus epidermidis. Biofilm formation positive type strain was used to determine the antibiofilm effects of the peptides. Biofilms were built on the cover slides and fluorescent dye SYTO9 and laser confocal microscope were used to observe the effects of peptides on the three-dimensional structure of Staphylococcus epidermidis biofilms. The cell membrane permeability of Staphylococcus epidermidis was detected by flow cytometry. Expressions of icaA and icaDgenes were analyzed by real-time reverse transcription PCR. RESULTS: The minimal inhibitory concentrations of GH12 and SAAP-148 against Staphylococcus epidermidis were 8 and 16 µg/mL, respectively, and the minimal bactericidal concentration was 64 µg/mL. GH12 and SAAP-148 significantly inhibited the biofilm formation of Staphylococcus epidermidis at the concentration of 8 µg/mL (t=7.193, P<0.05) and 16 µg/mL (t=7.808, P<0.05), respectively. Similarly, the GH12 and SAAP-148 significantly eradicated the pre-formed biofilms at the concentration of 16 µg/mL (t=5.369, P<0.05) and 32 µg/mL (t=4.474, P<0.05) in a dose-response manner, respectively. Meanwhile, the two peptides broke the structure of biofims and reduce the total biomass. GH12 and SAAP-148 at the concentration of minimal inhibitory concentration significantly disrupted the cell membrane of Staphylococcus epidermidis. The expressions of icaA and icaDgenes were significantly inhibited by antimicrobial peptides at the 1×minimal inhibitory concentration. CONCLUSIONS: GH12 and SAAP-148 show significantly antimicrobial and anti-biofilm effects against Staphylococcus epidermidis by disruption of cell membrane and inhibition of icaAand icaDgene expression.
Assuntos
Plâncton , Staphylococcus epidermidis , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , PeptídeosRESUMO
OBJECTIVES: To study the inhibitory effects of 1,3-diaminopropane on the biofilm formation of Pseudomonas aeruginosa and the underlying mechanisms. METHODS: The experiment was divided into an experimental group and a control group. Crystal violet staining was used to examine the inhibitory effects of 1,3-diaminopropane on the biofilm formation of Pseudomonas aeruginosa, and the biofilm formation was compared between the 2 groups.Initial adherence inhibition assay and swimming plate assay were used to determine the inhibitory effects of 1,3-diaminopropane on the initial adherence and swimming motility of Pseudomonas aeruginosa,and the quantification of adhered cells and swimming diameter were compared between the 2 groups. Meanwhile, Western blotting was used to detect the Flagellin production of Pseudomonas aeruginosa; real-time RT-PCR was used to detect the quorum sensing system relative genes and flagellum regulative related genes expression in the 2 groups. Finally, molecular docking assay was used to calculate the interaction between 1,3-diaminopropane and LasI. RESULTS: Compared with the control group, the biofilm formation of Pseudomonas aeruginosa was significantly inhibited in the experimental group in a dose-dependent manner (t=6.07, P<0.01).Compared with the control group, the initial adherence of Pseudomonas aeruginosa could significantly inhibit from (0.890±0.389)×106 to (0.245±0.076)×106 CFU/mL (t=3.257, P<0.05) in the experimental group (2.0 mmol/L).Compared with the control group, the swimming motility of Pseudomonas aeruginosa flagellar mediation could also inhibit in the experimental group (2.0 mmol/L). The swimming motility diameter was from (1.840±0.144) to (0.756±0.222) cm (t=7.099, P<0.01). Compared with the control group, the Flagellin production was inhibited in the experimental group. Finally, the molecular docking assay showed that the potential target of 1,3-diaminopropane was LasI. CONCLUSIONS: 1,3-diaminopropane can significantly inhibit the biofilm formation of Pseudomonas aeruginosa, which potentially targets LasI protein.
Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biofilmes , Diaminas , Simulação de Acoplamento MolecularRESUMO
AIMS: Staphylococcus aureus (a bacterial pathogen) and Candida sp. (opportunistic fungi) are two clinically relevant biofilm-forming microbes responsible for a majority of community- and nosocomial-acquired infections. Dual species biofilm formation between S. aureus and Candida sp. extremely enhances the antimicrobial resistance of the micro-organisms and is difficult to treat with antibiotic therapy. Hence, it is crucial to explore new antimicrobial agents. Auranofin (AF) is a mixed ligand gold compound and has recently been repurposed as an antibacterial and antifungal agent. However, the effects of AF against dual species biofilm have remained largely untested. METHODS AND RESULTS: In the present study, by constructing biofilms on microplates and urinary catheter surfaces, AF showed strong planktonic cells and biofilm inhibitory effects against mono- and dual culture models of S. aureus and Candida albicans but only exhibited moderate antibiofilm effects on Candida parapsilosis. Auranofin could be synergistic with subminimal inhibitory concentrations of amphotericin B against S. aureus + C. albicans/C. parapsilosis dual biofilms. Auranofin also showed effective antimicrobial effects on vancomycin-resistant strains. However, the antimicrobial effects of AF were decreased in the presence of heat-inactivated foetal bovine serum. CONCLUSIONS: In summary, AF could effectively inhibit S. aureus and C. albicans mono- and dual biofilm formation in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: Coexistence between Staphylococcus aureus and Candida sp. in dual biofilms leads to increased resistance to some conventionally used antimicrobials, indicating a need for alternative treatments. This study demonstrates the potential for the Au-containing compound AF in the treatment of dual biofilm infections and encourages further investigation of this treatment for clinical use.
Assuntos
Anti-Infecciosos/farmacologia , Auranofina/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Anfotericina B/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Técnicas de Cocultura , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Staphylococcus aureus/crescimento & desenvolvimento , Cateteres Urinários/microbiologiaRESUMO
High concentration of glucose induces Staphylococcus aureus (S. aureus) aggregation, but the mechanism of this is still unclear. In this study, the aggregation of S. aureus strains was induced by high concentration of glucose (>7.8 mM), and which was dose- and time-dependent. In addition, the large amount of lactate acid produced during S. aureus aggregation, induced by glucose, resulted in decreased pH value. Lactic acid, the end product of glycolysis, could quickly induce S. aureus aggregation. Except for lactic acid, acetic acid and HCl also induced S. aureus aggregation. In addition, the aggregation of S. aureus strains induced by glucose or lactic acid was completely inhibited in Tris-HCl buffer (pH 7.5), and inhibition of glycolysis by 2-deoxyglucose significantly decreased S. aureus aggregation. The aggregation induced by glucose was dispersed by periodate and proteinase K. In summary, lactate acid produced by glycolysis contributed to S. aureus aggregation induced by high concentration of glucose.
Assuntos
Glucose/farmacologia , Glicólise , Ácido Láctico/biossíntese , Interações Microbianas , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Ácido Acético/farmacologia , Endopeptidase K/farmacologia , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Ácido Periódico/farmacologiaRESUMO
It is well-known that the variation of noncovalent interactions of luminophores, such as π-π interaction, metal-to-metal interaction, and hydrogen-bonding interaction, can regulate their emission colors. Electrostatic interaction is also an important noncovalent interaction. However, very few examples of luminescence color tuning induced by electrostatic interaction were reported. Herein, a series of Zn(II)-bis(terpyridine) complexes (Zn-AcO, Zn-BF4, Zn-ClO4, and Zn-PF6) containing different anionic counterions were reported, which exhibit counterion-dependent emission colors from green-yellow to orange-red (549 to 622 nm) in CH2Cl2 solution. More importantly, it was found that the excited states of these Zn(II) complexes can be regulated by changing the electrostatic interaction between Zn2+ and counterions. On the basis of this controllable excited state, white light emission has been achieved by a single molecule, and a white light-emitting device has been fabricated. Moreover, a novel type of data decryption system with Zn-PF6 as the optical recording medium has been developed by the two-photon excitation technique. Our results suggest that rationally controlled excited states of these Zn(II) complexes by regulating electrostatic interaction have promising applications in various optoelectronic fields, such as light-emitting devices, information recording, security protection, and so on.
RESUMO
The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr.
Assuntos
Amicacina/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tirosina/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
With the growing antibiotic resistance in Staphylococcus aureus, it is imperative to develop innovative therapeutic strategies against new targets to reduce selective survival pressures and incidence of resistance. In S. aureus, interbacterial communication relies on a quorum sensing system that regulates gene expression and physiological activities. Here, we identified that Visomitin, an antioxidant small molecule, exhibited bactericidal efficacy against methicillin-resistant S. aureus and its high tolerance phenotypes like intracellular bacteria and persister cells without inducing resistance. Critically, sub-minimal inhibitory concentrations (sub-MICs) of Visomitin could serve as a potent quorum-quencher reducing virulence production (such as haemolysin and staphyloxanthin), along with inhibiting biofilm formation, self-aggregation, and colony spreading of S. aureus. These effects were probably mediated by interfering with the S. aureus accessory gene regulator quorum sensing system. In summary, our findings suggest that Visomitin shows dual antimicrobial effects, including bactericidal effects at the concentrations above MIC and quorum sensing inhibition effects at sub-MICs, which holds promise for treating MRSA-related refractory infections.
Assuntos
Antibacterianos , Biofilmes , Reposicionamento de Medicamentos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Virulência/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Due to the widespread abuse of antibiotics, drug resistance in Enterococcus has been increasing. However, the speed of antibiotic discovery cannot keep pace with the acquisition of bacterial resistance. Thus, drug repurposing is a proposed strategy to solve the crises. Lusutrombopag (LP) has been approved as a thrombopoietin receptor agonist by the Food and Drug Administration. This study demonstrated that LP exhibited significant antimicrobial activities against vancomycin-resistant Enterococcus in vitro with rare resistance occurrence. Further, LP combined with tobramycin exhibited synergistic antimicrobial effects in vitro and in vivo against Enterococcus. No in vitro or in vivo detectable toxicity was observed when using LP. Mechanism studies indicated that the disrupted proton motive force may account for LP's antimicrobial activity. In summary, these results demonstrate that LP has the previously undocumented potential to serve as an antibacterial agent against refractory infections caused by Enterococcus.
Assuntos
Aminoglicosídeos , Cinamatos , Tiazóis , Enterococos Resistentes à Vancomicina , Estados Unidos , Aminoglicosídeos/farmacologia , Vancomicina/farmacologia , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
IMPORTANCE: This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.