Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(15): e2108055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253981

RESUMO

Radical-containing frameworks (RCFs) have emerged as promising functional materials in various fields due to the combination of the highly ordered frame structure and the fascinating property of organic radicals. Here, the first example of radical-containing supramolecular organic frameworks (SOFs) fabricated by the chaotropic effect between closo-dodecaborate cluster (B12 H122- ) and 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT3+ ) is presented. The SOFs can be easily synthesized by stirring the B12 H122- and the TPT3+ in aqueous solution through self-assembly. Upon 435 nm light irradiation, the SOFs exhibits photochromic behavior from slight yellow (SOF-1) to dark purple (SOF-2). Electron paramagnetic resonance spectroscopy also reveals that stable radicals are generated in situ after light irradiation. Powder X-ray diffraction demonstrates the SOFs maintain their structural stabilities upon light irradiation. More interestingly, the radical-containing SOFs exhibit efficient photothermal effect under 660 nm light irradiation, which can be applied as photothermal agent for antibacterial application both in vitro and in vivo. This work highlights the construction of RCFs through supramolecular self-assembly, which may arouse applications in energy, catalysis, photoluminescence, and biomedical fields.


Assuntos
Terapia Fototérmica , Catálise
2.
Inorg Chem ; 61(47): 18899-18906, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36367771

RESUMO

The extreme magnetoresistance (XMR) of some compounds, challenging our understanding of magnetoresistance, is an interesting topic in condensed-matter and materials physics and future device applications. Here, we reported magnetotransport and magnetic properties of the as-grown and post-annealed TaCo2Te2 single crystals. The resistivity evolution with temperature in the two TaCo2Te2 single crystals shows a metallic behavior. Below 50 K, the XMR effect for the two crystals is found, and MR values at 3 K under 9 T are about 3.72 × 103% for the as-grown TaCo2Te2 and 5.71 × 102% for the annealed samples, larger than that of the previous report. The studies on the Hall effect of the two TaCo2Te2 single crystals indicate the multiband feature with high carrier mobilities from a two-band model. Electron and hole concentrations and mobilities of as-grown samples are comparable, while for the annealed sample, the hole concentration and mobility are larger than the electron concentration and mobility. The carrier mobilities for the two TaCo2Te2 single crystals have the same order of magnitude, ∼103 cm2 V-1 s-1. The XMR effect may be from high carrier mobilities. Magnetization of the as-grown TaCo2Te2 decreases with increasing temperature, and a weaker magnetic transition at ∼150 K is observed. The annealed TaCo2Te2 shows no magnetic transition and just a paramagnetic behavior with rising temperature. These results indicate that defects/deficiencies may play an important role in magnetotransport and magnetic properties of the two TaCo2Te2 single crystals. These results are helpful in deeply understanding the XMR mechanism and magnetic properties in TaCo2Te2 and offer a way to study the magnetic properties of the XMR Co-Te system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa