Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(3): 210-215, 2020 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-32621427

RESUMO

An intravascular ultrasound-enhanced thrombolysis excitation system with adjustable frequency, amplitude and duty cycle was designed based on FPGA (ZYNQ-7Z020). Firstly, the FPGA generated waveform amplitude binary data based on direct digital frequency synthesis (DDS) technology, and then the data was converted into burst signal through an external daughter card, which included D/A conversion circuit, active low-pass filter, power amplifier circuit and impedance matching circuit. The test results demonstrated that the output waveform reached the target with advantages of simple implementation and flexible control, the peak negative pressure generated from ultrasound transducer was doubled by means of an electrical impedance matching network. In vitro thrombus models were applied to verify the excitation system, it turned out that ultrasound cavitation effect generated could accelerate the penetration of urokinase and increase the thrombolysis rate by about 20%.


Assuntos
Amplificadores Eletrônicos , Terapia Trombolítica , Impedância Elétrica , Ultrassonografia , Ultrassonografia de Intervenção
2.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38542590

RESUMO

Dual-frequency ultrasounds have demonstrated significant potential in augmenting thermal ablation efficiency for tumor treatment. Ensuring proper impedance matching between the dual-frequency transducer and the power amplifier system is imperative for equipment safety. This paper introduces a novel dual-frequency impedance matching network utilizing L-shaped topology and employing a genetic algorithm to compute component values. Implementation involved an adjustable capacitor and inductor network to achieve dual-frequency matching. Subsequently, the acoustic parameters of the dual-frequency HIFU transducer were evaluated before and after matching, and the effects of ultrasound thermal ablation with and without matching were compared. The proposed dual-frequency impedance matching system effectively reduced the standing wave ratio at the two resonance points while enhancing transmission efficiency. Thermal ablation experiments with matching circuits showed improved temperature rise efficiencies at both frequencies, resulting in an expanded ablation zone. The dual-frequency impedance matching method significantly enhances the transmission efficiency of the dual-frequency ultrasound system at two operational frequencies, thereby ensuring equipment safety. It holds promising prospects for application in dual-frequency ultrasound treatment.

4.
Diagnostics (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260712

RESUMO

An ultrasonic needle-actuating device for tissue biopsy and regional anaesthesia offers enhanced needle visibility with color Doppler imaging. However, its specific performance is not yet fully determined. This work investigated the influence on needle visibility of the insertion angle and drive voltage, as well as determined the accuracy and agreement of needle tip localization by comparing color Doppler measurements with paired photographic and B-mode ultrasound measurements. Needle tip accuracy measurements in a gelatin phantom gave a regression trend, where the slope of trend is 0.8808; coefficient of determination (R2) is 0.8877; bias is -0.50 mm; and the 95% limits of agreement are from -1.31 to 0.31 mm when comparing color Doppler with photographic measurements. When comparing the color Doppler with B-mode ultrasound measurements, the slope of the regression trend is 1.0179; R2 is 0.9651; bias is -0.16 mm; and the 95% limits of agreement are from -1.935 to 1.605 mm. The results demonstrate the accuracy of this technique and its potential for application to biopsy and ultrasound guided regional anaesthesia.

5.
Biomed Res Int ; 2020: 5734932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964037

RESUMO

The cryptogenic epilepsy of the neocortex is a disease in which the seizure is accompanied by intense cerebral nerve electrical activities but the lesions are not observed. It is difficult to locate disease foci. Electrocorticography (ECoG) is one of the gold standards in seizure focus localization. This method detects electrical signals, and its limitations are inadequate resolution which is only 10 mm and lack of depth information. In order to solve these problems, our new method with implantable micro ultrasound transducer (MUT) and photoplethysmogram (PPG) device detects blood changes to achieve higher resolution and provide depth information. The basis of this method is the neurovascular coupling mechanism, which shows that intense neural activity leads to sufficient cerebral blood volume (CBV). The neurovascular coupling mechanism established the relationship between epileptic electrical signals and CBV. The existence of mechanism enables us to apply our new methods on the basis of ECoG. Phantom experiments and in vivo experiments were designed to verify the proposed method. The first phantom experiments designed a phantom with two channels at different depths, and the MUT was used to detect the depth where the blood concentration changed. The results showed that the MUT detected the blood concentration change at the depth of 12 mm, which is the position of the second channel. In the second phantom experiments where a PPG device and MUT were used to monitor the change of blood concentration in a thick tube, the results showed that the trend of superficial blood concentration change provided by the PPG device is the same as that provided by the MUT within the depth of 2.5 mm. Finally, in the verification of in vivo experiments, the blood concentration changes on the surface recorded by the PPG device and the changes at a certain depth recorded by the MUT all matched the seizure status shown by ECoG. These results confirmed the effectiveness of the combined micro sensors.


Assuntos
Epilepsia/diagnóstico , Epilepsia/patologia , Convulsões/diagnóstico , Convulsões/patologia , Animais , Eletrocorticografia/instrumentação , Eletrodos Implantados , Humanos , Masculino , Neocórtex/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa