Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Angew Chem Int Ed Engl ; 62(42): e202310402, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37642538

RESUMO

G-quadruplex DNA is a non-canonical structure that forms in guanine-rich regions of the genome. There is increasing evidence showing that G-quadruplexes have important biological functions, and therefore molecular tools to visualise these structures are important. Herein we report on a series of new cyclometallated platinum(II) complexes which, upon binding to G-quadruplex DNA, display an increase in their phosphorescence, acting as switch-on probes. More importantly, upon binding to G-quadruplexes they display a selective and distinct lengthening of their emission lifetime. We show that this effect can be used to selectively visualise these structures in cells using Phosphorescence Lifetime Imaging Microscopy (PLIM).


Assuntos
Quadruplex G , Platina , Platina/química , Microscopia , DNA/química
2.
Phys Chem Chem Phys ; 24(44): 27558-27565, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36346380

RESUMO

Kynurenic acid (KNA) in the triplet state reacts with tryptophan (Trp) at neutral pH via proton-coupled electron transfer (PCET), which includes the stepwise transition of both electron and proton from Trp to triplet KNA. In the case of tyrosine (Tyr), the quenching reaction is H-transfer, a simultaneous transfer of electron and proton. In this work, we used the time-resolved chemically induced dynamic nuclear polarization (TR CIDNP) method to unveil the sites of H/H+ transfer within KNA. For this purpose, we obtained the values of 1H hyperfine coupling constants (HFCCs) and g-factors for different tautomeric forms of KNA radicals by the DFT method, then calculated CIDNP intensities using these g-factors and HFCCs according to the Adrian model. The calculated CIDNP intensities for different protons were correlated with their CIDNP intensities in the geminate spectra detected in the photoreactions of KNA with Trp, N-acetyl Trp, and N-acetyl Tyr. Best-fit proportionality relationships between calculated and experimental CIDNP intensities have shown that the KNA anion radical is present in two of the three possible tautomeric forms, which result from the H/H+ movement to the carbonyl oxygen of keto- and oxo-quinolinate forms of KNA, without any visible contribution of the H/H+ transfer to the nitrogen of the enol form. For 4-hydroxyquinoline (4HQN), being the chromophoric core of KNA and exhibiting the same PCET and H-transfer reactions with Trp and Tyr, a single possible tautomeric form of its radical has been revealed as H/H+ transfer to the carbonyl oxygen of the keto-form.


Assuntos
Ácido Cinurênico , Triptofano , Prótons , Tirosina , Elétrons
3.
Phys Chem Chem Phys ; 23(39): 22483-22491, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586113

RESUMO

Kynurenic acid (KNA) and 4-hydroxyquinoline (4HQN) are photochemically active products of tryptophan catabolism that readily react with tryptophan (Trp) and tyrosine (Tyr) after optical excitation. Recently, transient absorption experiments have shown that at neutral pH Trp reacts with triplet KNA via proton-coupled electron transfer (PCET), and not via electron transfer (ET) as it was suggested before. PCET includes the stepwise transition of both electrons and protons from Trp to triplet KNA. In this work, we confirmed that PCET is the reaction mechanism by the alternative method of time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP). Further studies by TR-CIDNP revealed hydrogen transfer as the mechanism of the reaction between triplet KNA and Tyr in neutral solutions and a transition of both PCET and H-transfer mechanisms to ET under acidic conditions. 4HQN, being the chromophoric core of KNA, exhibits different spectral and photophysical properties from KNA but employs the same mechanisms for the reactions of its triplet state with Trp and Tyr at neutral and acidic pH.


Assuntos
Hidroxiquinolinas/química , Ácido Cinurênico/química , Simulação de Dinâmica Molecular , Triptofano/química , Tirosina/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio
4.
Phys Chem Chem Phys ; 23(43): 24545-24549, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704576

RESUMO

We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.


Assuntos
Peptídeos/química , Compostos de Boro/química , Colágeno/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Soluções , Espectrometria de Fluorescência , Viscosidade
5.
Phys Chem Chem Phys ; 21(4): 2017-2028, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30633277

RESUMO

Time-resolved chemically induced dynamic nuclear polarization (CIDNP) and transient absorption (TA) were applied to reveal the branching ratio of the singlet and triplet recombination channels in the reaction of short-lived radicals of carboxy benzophenones and the aromatic amino acids histidine, tryptophan, and tyrosine in neutral aqueous solution. It was established that the share of triplet recombination increases with increasing number of carboxylic groups: no triplet recombination was found for 4-carboxy benzophenone, whereas ∼13% of radicals of 4,4'-dicarboxy benzophenone (DCBP) and ∼27% of radicals of 3,3',4,4'-tetracarboxy benzophenone (TCBP) react with histidine radicals from the triplet state of radical pairs. The main idea is that the protonated (π,π*) triplet state of TCBP or DCBP is populated via back electron transfer from the ketyl radical of TCBP or DCBP to the radical of the amino acid. The protonated triplet state of the ketone decays with the formation of a metastable hydroxylated product, which is detected by TA. Taking into account triplet recombination provides excellent coincidence between experimental data and the simulated CIDNP kinetics.


Assuntos
Aminoácidos Aromáticos/química , Benzofenonas/química , Processos Fotoquímicos , Aminoácidos Aromáticos/efeitos da radiação , Benzofenonas/efeitos da radiação , Transporte de Elétrons , Radicais Livres , Cinética
6.
J Phys Chem A ; 123(2): 505-516, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30566354

RESUMO

Magnetic field-affected reaction yield (MARY) spectroscopy is a spin chemistry technique for detecting short-lived radical ions. Having sensitivity to transient species with lifetimes as short as nanoseconds, MARY spectroscopy usually does not provide detailed information on their magnetic resonance parameters, except for simple systems with equivalent magnetic nuclei. In this work, the radical anions of two fluorinated diphenylacetylene derivatives with nonequivalent magnetic nuclei and unknown hyperfine coupling constants ( AHF) were investigated by MARY spectroscopy. The MARY spectra were found to be resolved and have resonance lines in nonzero magnetic fields, which are determined by the AHF values. Simple relationships between the positions of resonance MARY lines and the AHF values were established from the analysis of the different Hamiltonian block contributions to the MARY spectrum. The obtained experimental AHF values are in agreement with the results of quantum chemical calculations at the density functional theory level.

7.
Phys Chem Chem Phys ; 20(22): 15074-15085, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29790516

RESUMO

Kynurenines (KNs) are natural UV filters of the human eye lens, protecting the eye tissues from solar UV radiation. Key points of their effective protection are the intramolecular charge transfer (ICT) in the excited state and the fast dissipation of absorbed light energy into heat via the intermolecular H-bonds. Herein we report that the introduction of an unsaturated double bond in the amino acid side chain, operating as an ICT-enhancing electron donor group, drastically accelerates the internal conversion (IC) due to a conical intersection (CI) between the potential energy surfaces of the excited and ground states. Our photophysical study of a deaminated KN (carboxyketoalkene, CKA), an intrinsic product of KN thermal decomposition, demonstrates an unusually fast excited state decay in a broad range of solvents of different polarity and proticity. The detailed analysis of interactions in the excited state by different computational techniques revealed that the changes in molecular structure - the twist of the carbonyl group from the plane of the aromatic ring followed by the formation of two mutually orthogonal conjugated substructures - are responsible for the CI of the excited and ground state potential energy surfaces. Intermolecular H-bonds facilitate the transition to the CI, but do not play a crucial role in the fast decay of the excited state. An extremely fast and efficient IC in CKA opens the way for the design of new types of organic UV filters and their applications in material science, cosmetics and medicine.

8.
J Phys Chem A ; 122(5): 1235-1252, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29283574

RESUMO

Customizable and technology-friendly functional materials are one of the mainstays of emerging organic electronics and optoelectronics. We show that recombination exciplexes of simple substituted diphenylacetylenes with tertiary amines can be a convenient source of tunable deep-blue emission with possible applications in organic electroluminescent systems. The optically inaccessible exciplexes were produced via recombination of radiation-generated radical ion pairs in alkane solution, which mimics charge transport and recombination in the active layer of practical organic light-emitting diodes in a simple solution-based experiment. Despite varying and rather poor intrinsic emission properties, diphenylacetylene and its prototypical methoxy (donor) or trifluoromethyl (acceptor) monosubstituted derivatives readily form recombination exciplexes with N,N-dimethylaniline and other tertiary amines that produce emission with maxima ranging from 385 to 435 nm. The position of emission band maximum linearly correlates with readily calculated gas-phase electron affinity of the corresponding diphenylacetylene, which can be used for fast computational prescreening of the candidate molecules, and various substituted diphenylacetylenes can be synthesized via relatively simple and universal cross-coupling reactions of Sonogashira and Castro. Together, the simple solution-based experiment, computationally cheap prescreening method, and universal synthetic strategy may open a very broad and chemically convenient class of compounds to obtain OLEDs and OLED-based multifunctional devices with tunable emission spectrum and high conversion efficiency that has yet not been seriously considered for these purposes.

9.
Photochem Photobiol Sci ; 15(6): 767-78, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27142284

RESUMO

X-irradiation of nonpolar solutions likely provides a possibility to create exciplexes for any donor-acceptor pair that would energetically and sterically allow this. Thorough study and characterization of X-radiation generated exciplexes usually cannot be carried out with conventional methods because of the complex and non-exponential formation and decay dynamics of these species. In this paper, we present a simple and universal experimental approach for the estimation of fluorescence lifetimes (τF) of X-radiation generated exciplexes. The suggested procedure is based on the comparison of quenching of the exciplex emission band and the emission band from a standard luminophore with a known excited state lifetime by dissolved oxygen. Using this approach we report the τF values for two systems with optically inaccessible exciplexes, diphenylacetylene-N,N-dimethylaniline (DMA) and p-terphenyl-DMA, and for two typical exciplex forming systems, naphthalene-DMA and anthracene-DMA. All the found τF values for the X-radiation generated exciplexes lie in the range of 50-70 ns. The accuracy of this approach was checked by time-resolved measurements under X- or near-UV irradiation for those pairs, whose properties make this feasible. The proposed method gives a possibility to avoid a complex numerical evaluation of the non-exponential kinetics of recombination luminescence, and can be used to estimate the characteristic τF values for luminophores and excited complexes formed under X-radiation.


Assuntos
Compostos de Anilina/química , Fluorescência , Raios X , Acetileno/análogos & derivados , Acetileno/química , Alcanos/química , Antracenos/química , Cinética , Naftalenos/química , Oxigênio/química , Processos Fotoquímicos , Soluções/química , Soluções/efeitos da radiação , Compostos de Terfenil/química
10.
Photochem Photobiol Sci ; 12(3): 546-58, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23258594

RESUMO

The photophysics and photochemistry of kynurenic acid (KNA) and kynurenine yellow (KNY) in neutral aqueous solutions were investigated using time-resolved optical spectroscopy. Both molecules have similar quinoline-like structures, the only difference being the absence of conjugation in the nitrogen containing cycle in KNY. The main channel of S(1) excited state decay in the case of partially-unconjugated KNY is the solvent assisted S(1) → S(0) radiationless transition via intermolecular hydrogen bonds (Φ(IC) = 0.96), whereas, in the case of fully-conjugated KNA, it is intersystem crossing to the triplet state (Φ(T) = 0.82). The major intermediate products of the singlet excited KNY deactivation are the triplet state (Φ(T) = 0.022) and, most probably, the enol form (Φ(enol) = 0.012), which decay with the formation of 2,3-dihydro-4-hydroxyquinoline and 4-hydroxyquinoline, respectively. The results obtained show that KNA and KNY, which are products of the decomposition of the UV filter kynurenine, are significantly more photoactive and less photostable than the parent molecule.


Assuntos
Ácido Cinurênico/química , Fotólise , Quinolonas/química , Água/química , Oxirredução , Soluções , Espectrometria de Fluorescência
11.
Angew Chem Weinheim Bergstr Ger ; 135(42): e202310402, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38516271

RESUMO

G-quadruplex DNA is a non-canonical structure that forms in guanine-rich regions of the genome. There is increasing evidence showing that G-quadruplexes have important biological functions, and therefore molecular tools to visualise these structures are important. Herein we report on a series of new cyclometallated platinum(II) complexes which, upon binding to G-quadruplex DNA, display an increase in their phosphorescence, acting as switch-on probes. More importantly, upon binding to G-quadruplexes they display a selective and distinct lengthening of their emission lifetime. We show that this effect can be used to selectively visualise these structures in cells using Phosphorescence Lifetime Imaging Microscopy (PLIM).

12.
Chem Sci ; 13(38): 11368-11375, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320581

RESUMO

Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.

13.
Chimia (Aarau) ; 65(5): 350-2, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21744692

RESUMO

The activities of our research group in the field of photoinduced electron transfer reactions are discussed and illustrated by several examples.

14.
Free Radic Biol Med ; 172: 331-339, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34146664

RESUMO

In the human eye lens the endogenous chromophores of UV-A light (315-400 nm) are able to sensitize radical reactions leading to protein modifications during normal aging and the cataract progression. Kynurenic acid (KNA-) is the most photochemically active dye of the human eye lens reported to date with pKa(KNAH2•) 5.5 for its radical form. Cataract is thought to develop under oxidative stress which could be accompanied by acidosis, an acidification of the intracellular environment. Protonation of kynurenyl radicals at mildly acidic conditions may change the outcome of radical reactions leading to additional damage to proteins. In this work we investigated the influence of pH on the degradation of initial reagents and the formation of products in photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) in free states. Our results have shown that pH variation has minor influence on kinetics of reagent decay and accumulation of products in reactions between tyrosyl and kynurenic acid radicals. However in the case of Trp a two-fold decrease of the reagent degradation without visible changes in the composition of formed products was observed with pH decrease from 7 to 3. Time-resolved measurements have shown similar acidification-induced two-fold acceleration of decay of kynurenyl and tryptophanyl radicals via Back Electron Transfer (BET) with the restoration of initial reagents. Experiments with tryptophan derivatives with different pKa values for their radical forms point out the protonation of tryptophanyl radical as the driving force for BET acceleration at low pH. Our results demonstrate that the protonation of kynurenyl radical does not change its reactivity towards amino acids radicals but the total yield of radical photodamage decreases with the protonation of tryptophanyl radicals. It could be expected that radical induced damage to proteins will depend on the pKa of tryptophanyl radicals within a protein globule.


Assuntos
Ácido Cinurênico , Triptofano , Aminoácidos , Radicais Livres , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Tirosina
15.
Free Radic Biol Med ; 174: 211-224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363946

RESUMO

An acidosis, a decrease of pH within a living tissue, may alter yields of radical reactions if participating radicals undergo partial or complete protonation. One of photosensitizers found in the human eye lens, kynurenic acid (KNA-), possesses pKa 5.5 for its radical form that is close to physiological pH 6.89 for a healthy lens. In this work we studied the influence of pH on mechanisms and products of photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) within a globule of model protein, Hen White Egg Lysozyme (HEWL). Our results show that the rate constant of back electron transfer from kynurenyl to HEWL• radicals with the restoration of initial reagents - the major decay pathway for these radicals - does not change in the pH 3-7. The quantum yield of HEWL degradation is also pH independent, however a shift of pH from 7 to 5 completely changes the outcome of photoinduced damage to HEWL from intermolecular cross-linking to oxygenation. HPLC-MS analysis has shown that four of six Trp and all Tyr residues of HEWL are modified in different extents at all pH, but the lowering of pH from 7 to 5 significantly changes the direction of main photodamage from Trp62 to Trp108 located at the entrance and bottom of enzymatic center, respectively. A decrease of intermolecular cross-links via Trp62 is followed by an increase in quantities of intramolecular cross-links Tyr20-Tyr23 and Tyr23-Tyr53. The obtained results point out the competence of cross-linking and oxygenation reactions for Trp and Tyr radicals within a protein globule and significant increase of oxygenation to the total damage of protein in the case of cross-linking deceleration by coulombic repulsion of positively charged protein globules.


Assuntos
Ácido Cinurênico , Triptofano , Aminoácidos , Animais , Galinhas/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Muramidase/metabolismo , Oxirredução , Tirosina
16.
J Photochem Photobiol B ; 225: 112346, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736070

RESUMO

An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.


Assuntos
Cristalino/efeitos da radiação , Raios Ultravioleta , Animais , Membrana Celular/efeitos da radiação , Técnicas In Vitro , Oxigênio Singlete/metabolismo , Suínos , Viscosidade
17.
ACS Sens ; 6(6): 2158-2167, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34060823

RESUMO

A quantitative fluorescent probe that responds to changes in temperature is highly desirable for studies of biological environments, particularly in cellulo. Here, we report new cell-permeable fluorescence probes based on the BODIPY moiety that respond to environmental temperature. The new probes were developed on the basis of a well-established BODIPY-based viscosity probe by functionalization with cyclopropyl substituents at α and ß positions of the BODIPY core. In contrast to the parent BODIPY fluorophore, α-cyclopropyl-substituted fluorophore displays temperature-dependent time-resolved fluorescence decays showing greatly diminished viscosity dependence, making it an attractive sensor to be used with fluorescence lifetime imaging microscopy (FLIM). We performed theoretical calculations that help rationalize the effect of the cyclopropyl substituents on the photophysical behavior of the new BODIPYs. In summary, we designed an attractive new quantitative FLIM-based temperature probe that can be used for temperature sensing in live cells.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Temperatura , Viscosidade
18.
Phys Chem Chem Phys ; 12(32): 9502-15, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20617247

RESUMO

The properties of xanthurenic acid (XAN) in ground and photoexcited states have been studied using steady-state and time-resolved optical methods as well as quantum chemistry calculations. In neutral aqueous solution and in alcohols, XAN is present in a single tautomeric form (keto form), whereas in aprotic solvents and probably in basic aqueous solutions, more than one tautomeric form is present. UV irradiation of aqueous and alcoholic solutions of XAN results in a very rapid solvent-assisted tautomerization to the enol form, the later undergoes solvent-assisted transformation back to the keto form. The photolysis of XAN in aprotic solvents gives rise to the formation of numerous intermediate forms of XAN in both triplet and ground states. Under intense laser irradiation, XAN undergoes biphotonic ionization, the precursor for ionization being the excited singlet state.


Assuntos
Xanturenatos/química , Fotólise , Teoria Quântica , Solventes/química , Espectrometria de Fluorescência , Fatores de Tempo
19.
Free Radic Biol Med ; 152: 482-493, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31751763

RESUMO

In this work we studied the mechanisms of Type I photodamage to a model protein, hen egg white lysozyme (HEWL), sensitized by kynurenic acid (KNA) - one of the most efficient photosensitizers of the human eye lens present in trace amounts within tissue. The kynurenic acid radical, KNA•-, formed in the quenching of triplet KNA by HEWL, can be readily oxidized by molecular oxygen with the formation of superoxide anion radical O2•-. This leads to two ways of damage to proteins: either via the direct reactions between KNA•- and HEWL• radicals (Type Ia) or via the reactions between superoxide anion O2•- and HEWL• radicals (Type Ib). Our results demonstrate significant degradation of the protein during Type Ia photolysis with the formation of various oligomeric and oxygenated forms of HEWL and several deoxygenated products of KNA. Liquid chromatography-mass spectrometry analysis revealed the cross-linking of HEWL via tryptophan (Trp62) and tyrosine (Tyr23) residues and, for the first time, the covalent binding of KNA to protein via tryptophan (Trp62 and Trp123) residues. It was found that Type Ib reactions lead to substantially smaller damage to HEWL; the degradation quantum yields (Φdeg) of HEWL are 1.3 ± 0.3% and 0.12 ± 0.03% for Type Ia and Ib photolyses, respectively. Low Φdeg values for both types of photolysis indicate the Back Electron Transfer (BET) with the restoration of initial reagents as the main radical decay path with significantly higher BET efficiency in the case of Type Ib reactions. Therefore, in essentially oxygen-free tissues like the eye lens, the direct radical reactions via Type Ia mechanism could induce significantly larger damage to proteins, leading to their cross-linking and oxidation. The accumulation of these modifications can cause the development of various diseases, in particular, cataracts in the eye lens.


Assuntos
Ácido Cinurênico , Muramidase , Transporte de Elétrons , Humanos , Muramidase/metabolismo , Oxirredução , Triptofano
20.
J Phys Chem B ; 113(14): 4953-62, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19296626

RESUMO

The excited-state dynamics of kynurenine (KN) has been examined in various solvents by femtosecond-resolved optical spectroscopy. The lifetime of the S(1) state of KN amounts to 30 ps in aqueous solutions, increases by more than 1 order of magnitude in alcohols, and exceeds 1 ns in aprotic solvents such as DMSO and DMF, internal conversion (IC) being shown to be the main deactivation channel. The IC rate constant is pH independent but increases with temperature with an activation energy of about 7 kJ/mol in all solvents studied. The dependence on the solvent proticity together with the observation of a substantial isotope effect indicates that hydrogen bonds are involved in the rapid nonradiative deactivation of KN in water. These results give new insight into the efficiency of KN as a UV filter and its role in cataractogenesis.


Assuntos
Olho/química , Cinurenina/química , Teoria Quântica , Humanos , Cinurenina/análogos & derivados , Estrutura Molecular , Temperatura , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa