Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Biomed Eng ; 26(1): 273-306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959389

RESUMO

Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.


Assuntos
COVID-19 , Nanoestruturas , SARS-CoV-2 , Desenvolvimento de Vacinas , Humanos , Nanoestruturas/química , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas contra COVID-19/química , Animais , Adjuvantes Imunológicos/química , Neoplasias/imunologia , Neoplasias/prevenção & controle , Nanopartículas/química , Vacinas , Pandemias/prevenção & controle
2.
ACS Biomater Sci Eng ; 10(3): 1819-1829, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366973

RESUMO

Allergen immunotherapies are often successful at desensitizing allergic patients but can require life-long dosing and suffer from frequent adverse events including instances of systemic anaphylaxis, leading to poor patient compliance and high cost. Allergen vaccines, in turn, can generate more durable immunological allergen desensitization with far fewer doses. However, like immunotherapies, allergen vaccines are often highly reactogenic in allergic patients, hampering their use in therapeutic settings. In this work, we utilize a peptide-based self-assembling nanofiber platform to design allergen vaccines against allergen B-cell epitopes that do not elicit systemic anaphylaxis when administered subcutaneously to allergic mice. We show that, in contrast to protein vaccines, nanofiber vaccines prevent leakage of allergen material into the vascular compartment, a feature that likely underpins their reduced systemic reactogenicity. Further, we show that our allergen vaccine platform elicits therapeutic IgG antibody responses capable of desensitizing allergic mice to allergen-induced Type I hypersensitivity reactions. Finally, we have demonstrated a proof-of-concept for the therapeutic potential of nanofiber-based peanut allergen vaccines directed against peanut allergen-derived epitopes.


Assuntos
Anafilaxia , Vacinas , Humanos , Animais , Camundongos , Alérgenos , Dessensibilização Imunológica , Imunoglobulina G
3.
Adv Healthc Mater ; : e2401444, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113323

RESUMO

IL-1ß is a principal proinflammatory cytokine underlying multiple local and systemic chronic inflammatory conditions including psoriasis, rheumatoid arthritis, inflammatory bowel disease, and type 2 diabetes. Passive immunotherapies and biologic drugs targeting IL-1ß, while offering significant clinical benefit, nevertheless have limitations such as significant non-response rates, induction of anti-drug antibodies, and high costs. Here, an active immunotherapy raising antibody responses against IL-1ß employing self-assembling peptide nanofibers is described. The nanofibers contain defined quantities of B-cell epitopes from IL-1ß and exogenous T helper epitopes and employ the Q11 self-assembling peptide platform. Without adjuvant, the nanofibers raised durable anti-IL-1ß antibody responses that inhibit IL-1ß activity in vitro and in vivo. In a mouse model of imiquimod-induced psoriasis, prophylactic immunizations with the nanofibers diminished symptoms of epidermal thickening. This therapeutic effect is associated with biasing the immune response toward an anti-inflammatory IgG1/Th2 phenotype and a lowered expression of proinflammatory genes in the skin. Further, anti-IL-1ß nanofibers induced therapeutic immunosuppressive CD62L+ Treg cells. This technology represents a potential alternative for passive immunotherapies and other biologics for treating chronic inflammatory conditions.

4.
Adv Sci (Weinh) ; 10(11): e2204882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36762570

RESUMO

Microporous annealed particle scaffolds (MAPS) are a new class of granular materials generated through the interlinking of tunable microgels, which produce an interconnected network of void space. These microgel building blocks can be designed with different mechanical or bio-active parameters to facilitate cell infiltration and modulate host response. Previously, changing the chirality of the microgel crosslinking peptides from L- to D-amino acids led to significant tissue regeneration and functional recovery in D-MAPS-treated cutaneous wounds. In this study, the immunomodulatory effect of D-MAPS in a subcutaneous implantation model is investigated. How macrophages are the key antigen-presenting cells to uptake and present these biomaterials to the adaptive immune system is uncovered. A robust linker-specific IgG2b/IgG1 response to D-MAPS is detected as early as 14 days post-implantation. The fine balance between pro-regenerative and pro-inflammatory macrophage phenotypes is observed in D-MAPS as an indicator for regenerative scaffolds. The work offers valuable insights into the temporal cellular response to synthetic porous scaffolds and establishes a foundation for further optimization of immunomodulatory pro-regenerative outcomes.


Assuntos
Microgéis , Alicerces Teciduais , Alicerces Teciduais/química , Macrófagos , Materiais Biocompatíveis/farmacologia , Fenótipo
5.
Sci Adv ; 8(47): eabq4120, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417519

RESUMO

Urinary tract infections (UTIs) are a major public health problem affecting millions of individuals each year. Recurrent UTIs are managed by long-term antibiotic use, making the alarming rise of antibiotic resistance a substantial threat to future UTI treatment. Extended antibiotic regimens may also have adverse effects on the microbiome. Here, we report the use of a supramolecular vaccine to provide long-term protection against uropathogenic Escherichia coli, which cause 80% of uncomplicated UTIs. We designed mucus-penetrating peptide-polymer nanofibers to enable sublingual (under the tongue) vaccine delivery and elicit antibody responses systemically and in the urogenital tract. In a mouse model of UTI, we demonstrate equivalent efficacy to high-dose oral antibiotics but with significantly less perturbation of the gut microbiome. We also formulate our vaccine as a rapid-dissolving sublingual tablet that raises response in mice and rabbits. Our approach represents a promising alternative to antibiotics for the treatment and prevention of UTIs.


Assuntos
Infecções por Escherichia coli , Nanofibras , Infecções Urinárias , Vacinas , Camundongos , Coelhos , Animais , Infecções por Escherichia coli/prevenção & controle , Infecções Urinárias/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Research (Wash D C) ; 2020: 1387402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32259105

RESUMO

The generation of stable clones for biomolecule production is a common but lengthy and labor-intensive process. For complex molecules, such as viruses or virus-like particles (VLPs), the timeline becomes even more cumbersome. Thus, in the early stages of development, transient production methods serve as a reasonable alternative to stable clone construction. In this work, an investigation of a polyethylenimine- (PEI-) based transfection method for the transient production of Chikungunya (Chik) VLPs, a vaccine candidate molecule, was undertaken. This effort focuses on tracking cell population responses during transfection, understanding how process changes affect these responses, and monitoring patterns in cell performance over the culture duration. Plasmid labeling and VLP staining were employed to comprehensively track cells via flow cytometry and to draw correlations between plasmid DNA (pDNA) uptake and the resulting VLP expression. The method detected high transfection efficiency (≥97%) in all samples tested and demonstrated the capability to track kinetics of plasmid-cell binding. With varied transfection cell concentrations, the pDNA binding kinetics are altered and saturation binding is observed in the lowest cell concentration sample tested in less than 3 hours of incubation. Interestingly, in all samples, the flow cytometry analysis of relative pDNA amount versus VLP expression staining showed that cells which contained fewer pDNA complexes resulted in the highest levels of VLP stain. Finally, to determine the potential breadth of our observations, we compared daily expression patterns of ChikVLP with a reporter, monomeric GFP molecule. The similarities detected suggest the interpretations presented here to likely be more broadly informative and applicable to PEI-based transient production of additional biological products as well.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa