Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2208695120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888656

RESUMO

Recent studies show that antiviral systems are remarkably conserved from bacteria to mammals, demonstrating that unique insights into these systems can be gained by studying microbial organisms. Unlike in bacteria, however, where phage infection can be lethal, no cytotoxic viral consequence is known in the budding yeast Saccharomyces cerevisiae even though it is chronically infected with a double-stranded RNA mycovirus called L-A. This remains the case despite the previous identification of conserved antiviral systems that limit L-A replication. Here, we show that these systems collaborate to prevent rampant L-A replication, which causes lethality in cells grown at high temperature. Exploiting this discovery, we use an overexpression screen to identify antiviral functions for the yeast homologs of polyA-binding protein (PABPC1) and the La-domain containing protein Larp1, which are both involved in viral innate immunity in humans. Using a complementary loss of function approach, we identify new antiviral functions for the conserved RNA exonucleases REX2 and MYG1; the SAGA and PAF1 chromatin regulatory complexes; and HSF1, the master transcriptional regulator of the proteostatic stress response. Through investigation of these antiviral systems, we show that L-A pathogenesis is associated with an activated proteostatic stress response and the accumulation of cytotoxic protein aggregates. These findings identify proteotoxic stress as an underlying cause of L-A pathogenesis and further advance yeast as a powerful model system for the discovery and characterization of conserved antiviral systems.


Assuntos
Micovírus , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antivirais , Micovírus/genética , Micovírus/metabolismo , RNA de Cadeia Dupla , Imunidade Inata , Mamíferos/genética , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054618

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Assuntos
Herpesvirus Suídeo 1 , Lipoproteínas LDL , Pseudorraiva , Doenças dos Suínos , Animais , Humanos , Camundongos , Herpesvirus Suídeo 1/fisiologia , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9 , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/virologia , Internalização do Vírus , Linhagem Celular
3.
Nano Lett ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860507

RESUMO

The majority of dislocations in nitride epilayers are edge threading dislocations (TDs), which diminish the performance of nitride devices. However, it is extremely difficult to reduce the edge TDs due to the lack of available slip systems. Here, we systematically investigate the formation mechanism of edge TDs and find that besides originating at the coalescence boundaries, these dislocations are also closely related to geometrical misfit dislocations at the interface. Based on this understanding, we propose a novel strategy to reduce the edge TD density of the GaN epilayer by nearly 1 order of magnitude via graphene-assisted remote heteroepitaxy. The first-principles calculations confirm that the insertion of graphene dramatically reduces the energy barrier required for interfacial sliding, which promotes a new strain release channel. This work provides a unique approach to directly suppress the formation of edge TDs at the source, thereby facilitating the enhanced performance of photoelectronic and electronic devices.

4.
Mol Phylogenet Evol ; 190: 107955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898294

RESUMO

The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.


Assuntos
Braquiúros , Animais , Filogenia , Braquiúros/genética , China , Biodiversidade , Água Doce
5.
Microb Pathog ; 187: 106515, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160987

RESUMO

In this study, a low molecular weight poly-d-mannose (LMWM) was separated from a mixed polysaccharide synthesized previously. Monosaccharide composition, Fourier-Transform infrared spectroscopy (FT-IR), periodate oxidation and smith degradation were determined. After safety evaluation, the inhibition of LMWM on the different biofilm formation stages of Salmonella enterica serovar Typhimurium (S. Typhimurium) was tested in vitro. Furthermore, the effect of LMWM on the adhesion of S. Typhimurium to Caco-2 cells and cell surface hydrophobicity (CSH) were observed. Results indicated that LMWM was a homopolysaccharide without cytotoxicity and hemolysis, containing both α-mannose and ß-mannose. It showed obvious anti-biofilm activity on S. Typhimurium and mainly activated on the initial adhesion and formation stage, even better than the commercial S. cerevisiae mannan (CM). LMWM inhibited the adhesion of S. Typhimurium on Caco-2 cells with the inhibition rate of 61.04 % at 2 mg/ml. Meanwhile, LMWM decreased the hydrophobicity of S. Typhimurium cell surface. In conclusion, the inhibitory effect on S. Typhimurium biofilm was not caused by bacteriostatic or bactericidal activity of LMWM. The specific anti-adhesion and the decrease of bacterial CSH by LMWM may closely relate to anti-biofilm mechanism. This study provides some supports for the application of LMWM as antibiotics alternative on S. Typhimurium in the future.


Assuntos
Manose , Salmonella typhimurium , Humanos , Manose/metabolismo , Manose/farmacologia , Células CACO-2 , Peso Molecular , Saccharomyces cerevisiae , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes
6.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37659098

RESUMO

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Assuntos
Insuficiência Hepática Crônica Agudizada , Células-Tronco Mesenquimais , Camundongos , Animais , Insuficiência Hepática Crônica Agudizada/metabolismo , Proteínas Tirosina Quinases/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
7.
Chemistry ; : e202401886, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857119

RESUMO

Chalcogen bond (ChB) catalysis, as a new type in the field of non-covalent bond catalysis, has become a hot research topic in the field of organocatalysis in recent years. In the present work, we investigated the catalytic performance of a series of hypervalent ChB catalysis based on the intramolecular Aza-Michael reaction of aminochalcone. The reaction includes the carbon-nitrogen bond coupling step (key step) and the proton transfer step. The catalytic performance of mono-dentate pentafluorophenyl chalcogen bond donor ChB1 was comparable to that of bis-dentate chalcogen bond donor ChB4, and stronger than that of mono-dentate chalcogen bond donors ChB2 and ChB3. The formation of the chalcogen bond between the catalyst and the carbonyl oxygen atom of the reactant, causing the charge rearrangement of the reactant and C(1) charge of the -C-Ph group to become more positive, thereby the ChB catalysis promoted the nucleophile reaction. The electron density of the chalcogen bond of the pre-complex, the most positive electrostatic potentials of the catalyst, and the NPA charge of the key atom are proportional to the Gibbs energy barrier of the C-N bond coupling process, which provides an idea to predict the catalytic activity of the ChB catalysis.

8.
Catheter Cardiovasc Interv ; 103(6): 897-908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654635

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a frequent and potentially life-threatening complication after percutaneous coronary intervention (PCI) in patients with ST-segment-elevation myocardial infarction (STEMI). However, the relationship between obesity and the risk of AKI in this specific patient population has not been previously examined. METHODS: We queried the National Inpatient Sample (2016-2019) using ICD-10 codes to obtain a sample of adults with STEMI undergoing PCI. All patients were further subcategorized into obese and nonobese cohorts. The primary outcome was the incidence of AKI. Multivariate regression analysis was performed to assess the impact of obesity on AKI. The consistency of this correlation between subgroups was investigated using subgroup analysis and interaction testing. RESULTS: A total of 62,599 (weighted national estimate of 529,016) patients were identified, of which 9.80% (n = 6137) had AKI. Obesity comprised 19.78% (n = 1214) of the AKI cohort. Obese patients were on average younger, male, white, and had more comorbidities. Additionally, there was a significant positive association between obesity and AKI incidence (adjusted odds ratio [aOR]: 1.24, 95% confidence interval [CI]: 1.15-1.34), which was more pronounced in female patients (aOR: 1.56, 95% CI: 1.33-1.82, p < 0.001, p-interaction = 0.008). The AKI incidence in these patients increased steadily during the 4-year study period, and it was consistently higher in obese patients than in nonobese patients (p-trend < 0.001 for all). CONCLUSIONS: Obesity was independently associated with a greater risk of AKI among adults with STEMI undergoing PCI, particularly in female patients.


Assuntos
Injúria Renal Aguda , Bases de Dados Factuais , Obesidade , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Feminino , Masculino , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/epidemiologia , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Pessoa de Meia-Idade , Fatores de Risco , Obesidade/epidemiologia , Obesidade/complicações , Estados Unidos/epidemiologia , Incidência , Idoso , Medição de Risco , Resultado do Tratamento , Fatores de Tempo , Estudos Retrospectivos
9.
World J Urol ; 42(1): 148, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478056

RESUMO

OBJECTIVE: To assess the clinical efficacy of laparoscopic Lich-Gregoir (LLG) and transvesicoscopic Cohen reimplantation (TCR) in the treatment of vesicoureteral junction obstruction (VUJO) and vesicoureteral reflux (VUR). METHODS: This study retrospectively analyzed the clinical data of 66 pediatric patients with VUJO and VUR. They were classified into two groups, undergoing either the laparoscopic Lich-Gregoir operation (LLGO) (n = 35) or transvesicoscopic Cohen reimplantation operation (TCRO) (n = 31). The surgeries were performed between April 2018 and September 2022 at the First Affiliated Hospital of Guangxi Medical University, China. General characteristics, preoperative attributes, postoperative complications, renal function recovery, and improvement of hydronephrosis were compared between the two groups. RESULTS: All surgical procedures were successful with no requirement for reoperation. Both groups were comparable with respect to gender, affected side, weight, and postoperative complications. Nonetheless, the LLGO group contained a greater number of children younger than 12 months. The LLGO group demonstrated superiority over the TCRO group regarding the duration of the operation, intraoperative blood loss, and length of postoperative hospital stay. In contrast, postoperative complications, recovery of renal function, and hydronephrosis improvement did not exhibit statistically significant differences between the two groups. CONCLUSION: Both LLGO and TCRO were demonstrated to be precise, safe, and reliable surgical methods for treating pediatric VUJO and VUR. LLGO ureteral reimplantation offers particular advantages in selecting cases and appears more suitable for children younger than 12 months who have a small bladder capacity.


Assuntos
Hidronefrose , Laparoscopia , Ureter , Refluxo Vesicoureteral , Criança , Humanos , Estudos Retrospectivos , Procedimentos Cirúrgicos Urológicos/métodos , China , Ureter/cirurgia , Refluxo Vesicoureteral/cirurgia , Resultado do Tratamento , Laparoscopia/métodos , Reimplante/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/cirurgia , Hidronefrose/cirurgia
10.
Vet Res ; 55(1): 68, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807225

RESUMO

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Liberação de Vírus , Proteínas rab de Ligação ao GTP , Animais , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/genética , Suínos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , Pseudorraiva/virologia , Montagem de Vírus/fisiologia , Doenças dos Suínos/virologia , Linhagem Celular
11.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199264

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Assuntos
Bass , Doenças dos Peixes , Rhabdoviridae , Animais , Saccharomyces cerevisiae , Vacinação , Proteínas Fúngicas , Vacinas Sintéticas
12.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593759

RESUMO

Herein, we employ molecular dynamics simulations to decode the friction properties and phonon energy dissipation between black phosphorus layers. The observations reveal the influence of three factors, temperature, velocity, and normal load, on the friction force of monolayer/bilayer black phosphorus. Specifically, friction is negatively correlated with layer thickness and temperature, and positively correlated with velocity and normal load. The change in friction force is further explained in terms of frictional energy dissipation, and supplemented by the height of potential barriers as well as the number of excited phonons. From the phonon spectrum analysis, the phonon number at the contact interface is found to be higher than that at the non-contact interface. This is due to the larger distance of the contact interface atoms deviate from their equilibrium positions, resulting in higher total energy generated by more intense oscillations, and therefore contributes greater to friction.

13.
Environ Sci Technol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344765

RESUMO

Volatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS2), have significant implications for both atmospheric chemistry and climate change. Despite the crucial role of oceans in regulating their atmospheric budgets, our comprehension of their cycles in seawater remains insufficient. To address this gap, a field investigation was conducted in the western North Pacific to clarify the sources, sinks, and biogeochemical controls of these gases in two different marine environments, including relatively eutrophic Kuroshio-Oyashio extension (KOE) and oligotrophic North Pacific subtropical gyre. Our findings revealed higher concentrations of these gases in both seawater and the atmosphere in the KOE compared to the subtropical gyre. In the KOE, nutrient-rich upwelling stimulated rapid DMS biological production, while reduced seawater temperatures hindered the removal of OCS and CS2, leading to their accumulation. Furthermore, we have quantitatively evaluated the relative contribution of each pathway to the source and sink of DMS, OCS, and CS2 within the mixed layer and identified vertical exchange as a potential sink in most cases, transporting substantial amounts of these gases from the mixed layer to deeper waters. This research advances our understanding of sulfur gas source-sink dynamics in seawater, contributing to the assessment of their marine emissions and atmospheric budgets.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38780349

RESUMO

In recent years, gut microbiota has become a hot topic in the fields of medicine and life sciences. Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota produced by microbial fermentation of dietary fiber, play a vital role in healthy and ill hosts. SCFAs regulate the process of metabolism, immune, and inflammation and have therapeutic effects on gastrointestinal and neurological disorders, as well as antitumor properties. This review summarized the production, distribution, and molecular mechanism of SCFAs, as well as their mechanisms of action in healthy and ill hosts. In addition, we also emphasized the negative effects of SCFAs, aiming to provide the public with a more comprehensive understanding of SCFAs.

15.
J Phys Chem A ; 128(28): 5473-5480, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38968435

RESUMO

Liquid-phase synthesis of atomically precise nanoclusters has experienced rapid development recently, where polar solvents are indispensable in such a process. However, the regulation effect of solvents on the structural and electronic properties of different metal clusters and cluster assembly materials is still not well understood. Herein, a comprehensive density functional theory calculation has been performed to explore the solvation effect on heteroatom-doped endohedral gold clusters that always have remarkable stabilities and tunable electronic structures. The solvation free energy of the M@Au12 clusters (M = Cr, Mo, W, Co, Rh, Ir, Cu, Ag, and Au) was found to be related to the charge distribution of the central doped-atom M and the outer Au12 cage. Moreover, the aqueous solvent was observed to be able to increase the adsorption capacity of M@Au12 to O2 following the activation of O2 through the charge transfer from M@Au12 to O2, in which the transferred electrons occupy the π antibonding orbital of O2. In addition, the water solvent can also improve the hydrogenation reaction of O2 to form OOH over M@Au12, where the activation energy barrier for this process is very low with the participation of the solvent. Considering the importance of solvents in the liquid-phase synthesis of atomically precise clusters, these findings highlighted here could provide valuable theoretical guidance in potential applications of functional gold nanoclusters, especially in the liquid-phase cluster catalysis.

16.
J Phys Chem A ; 128(27): 5298-5306, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917472

RESUMO

The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38581328

RESUMO

Objective: The measurement of the right and left axillary arteries and aortic arch and their vessels by multi-row spiral CT angiography provides the basis for clinical catheter selection and depth for axillary artery placement. This study reported the clinical experience of 7 patients who successfully underwent ultrasound-guided percutaneous axillary artery cannulation for veno-arterial extracorporeal membrane oxygenation (VA-ECMO). Methods: Patients who had CT angiography of the thoracic aorta at our institution between January 2020 and March 2022 were assessed for eligibility and included. The diameters of the cephalic trunk (D1), right common carotid artery (D2), right axillary artery (D3), left common carotid artery (D4), left axillary artery opening (D5), right axillary artery cannulation length (L1), and left axillary artery cannulation length (L2) were measured. The tangential angles α, ß, and γ of the cephalic trunk, left common carotid artery and left subclavian and aorta was measured using an automatic angle-forming tool. The decision to use a 15F cannula for ultrasound-guided percutaneous axillary artery cannulation in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) aims to achieve optimal vascular access. This cannula size strikes a balance, providing sufficient blood flow rates for ECMO support while minimizing the risk of complications associated with larger cannulas. Precise measurements of arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries, play a crucial role in guiding catheter selection and determining the depth of axillary artery placement. These measurements allow for tailored approaches based on individual patient characteristics, enhancing the safety and efficacy of the intervention. Additionally, measuring tangential angles (α, ß, and γ) provides insights into arterial alignment, optimizing the cannula trajectory for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy, minimizing complications, and ensuring the success of ultrasound-guided percutaneous axillary artery cannulation. In summary, the choice of a 15F cannula and precise measurements are essential components of the methodology, emphasizing safety, efficacy, and personalized approaches in VA-ECMO. From March to June 2022, 7 patients (6 males and 1 female) in our intensive care medicine department underwent successful ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with 15F cannula, including 3 cases with extracorporeal cardiopulmonary resuscitation (ECPR) and 4 cases with circulatory collapse. Results: 292 patients met the study criteria, 215 males and 77 females, with a mean age of 67.2±14.2 years. The measurements showed that D1 was (13.1±2.0) mm, D2 was (8.8±2.5) mm, D3 was (6.1±1.2) mm, D4 was (8.3±3.5) mm, D5 was (6.1±1.1) mm, L1 was (114.1±17.8) mm, and L2 was (128.4±20.2) mm. The tangential angles α of the cephalic trunk left common carotid artery and left subclavian artery to the aorta were (43.8°±17.1°), ß was (50.7°±14.8°), and γ was (62.4°±19.1°). Males had significantly wider D3 and D5, longer L1 and L2, and smaller gamma angles than females (P < .05). Three ECPR cases showed no recovery of the spontaneous heartbeat with femoral artery cannulation for VA-ECMO but recovered spontaneous heartbeat after axillary artery cannulation for VA-ECMO was adopted. The measurements in this study have important implications for veno-arterial extracorporeal membrane oxygenation (VA-ECMO) procedures. They provide crucial information about arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries. This information guides clinicians in selecting catheters and determining the ideal depth for percutaneous axillary artery cannulation during ECMO interventions. Notable gender differences in arterial dimensions highlight the need for personalized approaches in ECMO procedures. Customizing catheter choices and cannulation depth based on individual patient characteristics, informed by these measurements, improves the safety and effectiveness of the intervention. The measured tangential angles (α, ß, and γ) offer insights into arterial alignment, crucial for optimizing cannula trajectory and ensuring proper alignment for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy and minimizing the risk of complications during ECMO procedures. In summary, these measurements directly enhance the precision and safety of VA-ECMO procedures, underscoring the importance of personalized approaches based on individual anatomical variations and improving overall intervention success and outcomes. Conclusion: Ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with a 15F cannula is clinically feasible. Axillary artery cannulation for VA-ECMO contributes to the restoration of spontaneous heartbeat in ECPR patients more than femoral artery cannulation, and the possible mechanism is a better improvement of coronary blood flow. However, the study has limitations, including a modest sample size and a single-center, retrospective design, impacting its generalizability. To validate and extend these findings, further research with larger and diverse cohorts, including prospective investigations, is necessary to ensure their applicability across various clinical settings and patient demographics in VA-ECMO.

18.
Plant Dis ; : PDIS07231371RE, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814516

RESUMO

Fusarium wilt fungus infection of bitter gourd, a major melon vegetable crop, results in massive yield reduction. Through extensive testing, some Fusarium wilt-resistant bitter melon varieties have been produced, but the molecular mechanism of their resistance to the fungus remains unknown. Importantly, after bitter melon plants are infected with Fusarium oxysporum f. sp. momordicae (FOM), apart from altering their gene expression levels, numerous metabolites are produced because of the interaction with the fungus. In the current study, an untargeted metabolomics analysis was performed to investigate the metabolic difference between resistant and susceptible bitter gourd varieties at various timepoints postinoculation with FOM based on liquid chromatography with mass spectrometry. A total of 1,595 positive ion mode and 922 negative ion mode metabolites were identified. Between the resistant and susceptible bitter gourd varieties, 213 unique differentially abundant metabolites (DAMs) were identified, and they were mainly enriched in the alpha-linolenic acid metabolism pathway. By comparing the postinoculation with preinoculation timepoints in the resistant and susceptible bitter gourd varieties, 93 and 159 DAMs were identified, respectively. These DAMs were mainly related to beta-alanine metabolism, among others. Multiple metabolites in the biosynthesis of the phenylpropanoid pathway showed greater variability in the susceptible than the resistant varieties, which may be related to senescence and mortality in the susceptible variety. These results provide new insights into the understanding of metabolite changes after FOM infection and a theoretical foundation for the elucidation of the bitter gourd disease resistance mechanism.

19.
Genomics ; 115(1): 110538, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36494076

RESUMO

Fusarium wilt is a typical soil-borne disease caused by Fusarium oxysporum f. sp. momordicae (FOM) in bitter gourd. In this study, by comparing sequencing data at multiple time points and considering the difference between resistant (R) and susceptible (S) varieties, differentially expressed genes were screened out. Short time-series expression miner analysis revealed the upregulated expression trend of genes, which were enriched in phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase signaling pathway. Further, observation of the microstructure revealed that the R variety may form tyloses earlier than the S variety to prevent mycelium diffusion from the xylem vessel. After Fusarium wilt infection, the enzymatic activities of superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and catalaseas well as levels of superoxide anion and malondialdehyde were increased in the R variety higher than those in the S variety. This study provides a reference to elucidate the disease resistance mechanism of bitter gourd.


Assuntos
Fusarium , Momordica charantia , Momordica charantia/genética , Fusarium/genética , Lignina , Transdução de Sinais , Perfilação da Expressão Gênica
20.
BMC Surg ; 24(1): 74, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424546

RESUMO

BACKGROUND: Nowadays, both lateral mass screw (LMS) and pedicle screw were effective instrumentation for posterior stabilization of cervical spine. This study aims to evaluate the feasibility of a new free-hand technique of C7 pedicle screw insertion without fluoroscopic guidance for cervical spondylotic myelopathy (CSM) patients with C3 to C6 instrumented by lateral mass screws. METHODS: A total of 53 CSM patients underwent lateral mass screws instrumentation at C3 to C6 levels and pedicle screw instrumentation at C7 level were included. The preoperative 3-dimenional computed tomography (CT) reconstruction images of cervical spine were used to determine 2 different C7 pedicle screw trajectories. Trajectory A passed through the axis of the C7 pedicle while trajectory B selected the midpoint of the base of C7 superior facet as the entry point. All these 53 patients had the C7 pedicle screw inserted through trajectory B by free-hand without fluoroscopic guidance and the postoperative CT images were obtained to evaluate the accuracy of C7 pedicle screw insertion. RESULTS: Trajectory B had smaller transverse angle, smaller screw length, and smaller screw width but both similar sagittal angle and similar pedicle height when compared with trajectory A. A total of 106 pedicle screws were inserted at C7 through trajectory B and only 8 screws were displaced with the accuracy of screw placement as high as 92.5%. CONCLUSION: In CSM patients with C3 to C6 instrumented by LMS, using trajectory B for C7 pedicle screw insertion is easy to both identify the entry point and facilitate the rod insertion.


Assuntos
Parafusos Pediculares , Doenças da Medula Espinal , Fusão Vertebral , Humanos , Estudos Retrospectivos , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/cirurgia , Fusão Vertebral/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa