Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 27131-27139, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018127

RESUMO

Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.


Assuntos
Bactérias , Hidrazinas
2.
Food Res Int ; 164: 112449, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738009

RESUMO

In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.


Assuntos
Antioxidantes , Solanum tuberosum , Solanum tuberosum/química , Peróxido de Hidrogênio , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Catecol Oxidase/metabolismo
3.
Nat Commun ; 12(1): 7205, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893622

RESUMO

Molecules with a nitrogen-nitrogen (N-N) bond in their structures exhibit various biological activities and other unique properties. A few microbial proteins are recently emerging as dedicated N-N bond forming enzymes in natural product biosynthesis. However, the details of these biochemical processes remain largely unknown. Here, through in vitro biochemical characterization and computational studies, we report the molecular basis of hydrazine bond formation by a family of di-domain enzymes. These enzymes are widespread in bacteria and sometimes naturally exist as two standalone enzymes. We reveal that the methionyl-tRNA synthase-like domain/protein catalyzes ATP-dependent condensation of two amino acids substrates to form a highly unstable ester intermediate, which is subsequently captured by the zinc-binding cupin domain/protein and undergoes redox-neutral intramolecular rearrangement to give the N-N bond containing product. These results provide important mechanistic insights into enzymatic N-N bond formation and should facilitate future development of novel N-N forming biocatalyst.


Assuntos
Proteínas de Transporte/química , Enzimas/química , Nitrogênio/química , Zinco/química , Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Produtos Biológicos/metabolismo , Catálise , Hidrazinas , Estrutura Molecular , RNA de Transferência , Rhodococcus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa