Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 20(9): 31-41, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31483573

RESUMO

PURPOSE: To investigate the fixed-jaw intensity-modulated radiotherapy (F-IMRT) and tangential partial volumetric modulated arc therapy (tP-VMAT) treatment plans for synchronous bilateral breast cancer (SBBC). MATERIALS AND METHOD: Twelve SBBC patients with pTis-2N0M0 stages who underwent whole-breast irradiation after breast-conserving surgery were planned with F-IMRT and tP-VMAT techniques prescribing 42.56 Gy (2.66 Gy*16f) to the breast. The F-IMRT used 8-12 jaw-fixed tangential fields with single (sF-IMRT) or two (F-IMRT) isocenters located under the sternum or in the center of the left and right planning target volumes (PTVs), and tP-VMAT used 4 tangential partial arcs with two isocenters located in the center of the left and right PTVs. Plan evaluation was based on dose-volume histogram (DVH) analysis. Dosimetric parameters were calculated to evaluate plan quality; total monitor units (MUs), and the gamma analysis for patient-specific quality assurance (QA) were also evaluated. RESULTS: For PTVs, the three plans had similar Dmean and conformity index (CI) values. F-IMRT showed a slightly better target coverage according to the V100% values and demonstrated an obvious reduction in V105% and Dmax compared with the values observed for sF-IMRT and tP-VMAT. Compared with tP-VMAT, sF-IMRT was slightly better in terms of V100% , V105% and Dmax . In addition, F-IMRT achieved the best homogeneity index (HI) values for PTVs. Concerning healthy tissue, tP-VMAT had an advantage in minimizing the high dose volume. The MUs of the tP-VMAT plan were decreased approximately 1.45 and 1 times compared with the sF-IMRT and F-IMRT plans, respectively, and all plans passed QA. For the lungs, heart and liver, F-IMRT achieved the smallest values in terms of Dmean and showed a significant difference compared with tP-VMAT. Simultaneously, sF-IMRT was also superior to tP-VMAT. For the coronary artery, tP-VMAT achieved the lowest Dmean , while the value for F-IMRT was 2.24% lower compared with sF-IMRT. For all organs at risk (OARs), tP-VMAT was superior at the high dose level. In contrast, sF-IMRT and F-IMRT were obviously superior at the low dose level. The sF-IMRT and F-IMRT plans showed consistent trends. CONCLUSION: All treatment plans for the provided techniques were of high quality and feasible for SBBC patients. However, we recommend F-IMRT with a single isocenter as a priority technique because of the tremendous advantage of local hot spot control in PTVs and the reduced dose to OARs at low dose levels. When the irradiated dose to the lungs and heart exceed the clinical restriction, two isocenter F-IMRT can be used to maximize OAR sparing. Additionally, tP-VMAT can be adopted for improving cold spots in PTVs or high-dose exposure to normal tissue when the interval between PTVs is narrow.


Assuntos
Algoritmos , Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Adulto , Simulação por Computador , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Dosagem Radioterapêutica
2.
Front Oncol ; 12: 958961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439463

RESUMO

Background and purpose: No research currently exists on the role of the accessory parotid gland (APG) in nasopharyngeal carcinoma (NPC). We thereby aimed to assess the effects of APG on the dosimetry of the parotid glands (PGs) during NPC radiotherapy and evaluate its predictive value for late xerostomia. Material and methods: The clinical data of 32 NPC patients with radiological evidence of the APG treated at Sun Yat-sen Memorial Hospital between November 2020 and February 2021 were retrospectively reviewed. Clinically approved treatment plans consisted of only the PGs as an organ at risk (OAR) (Plan1), while Plan2 was designed by considering the APG as a single organ at risk (OAR). The APG on Plan1 was delineated, and dose-volume parameters of the PGs alone (PG-only) and of the combined structure (PG+APG) were analyzed in both plans. The association of such dosimetric parameters in Plan1 with xerostomia at 6-9 months post-radiotherapy was further explored. Results: Fifty APGs were found, with a mean volume of 3.3 ± 0.2 ml. Significant differences were found in all dosimetric parameters between Plan1 and Plan2. The mean dose and percentage of OAR volumes receiving more than 30 Gy significantly reduced in Plan1 itself (PG-only vs. PG+APG, 39.55 ± 0.83 Gy vs. 37.71 ± 0.75 Gy, and 62.00 ± 2.00% vs. 57.41 ± 1.56%, respectively; p < 001) and reduced further in Plan2 (PG+APG, 36.40 ± 0.74 Gy, and 55.54 ± 1.61%, respectively; p < 0.001). Three additional patients met the dose constraint in Plan1, which increased to seven in Plan2. With APG included, the predictive power of the dosimetric parameters for xerostomia tended to improve, although no significant differences were observed. Conclusion: APG is anatomically similar to the PGs. Our findings suggest the potential benefits of treating the APG and PGs as a single OAR during radiotherapy (RT) of NPC by improving PG sparing.

3.
RSC Adv ; 8(11): 5797-5805, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963303

RESUMO

Neural stem cells (NSCs) exhibit preferential homing toward some types of brain lesion, but their migratory property during radiation brain injury (RBI) remains unexplored. Here, we use the superparamagnetic iron oxide (SPIO)-labeled magnetic resonance imaging (MRI) technology to determine the migration of transplanted NSCs in two partial RBI models in real time, created by administering 30-55 Gy of radiation to the right or posterior half of the adult rat brain. SPIO-labeled NSCs were stereotactically grafted into the uninjured side one week after RBI. The migration of SPIO-labeled NSCs in live radiation-injured brains was traced by MRI for up to 28 days after engraftment and quantified for their moving distances and speeds. A high labeling efficiency (>90%) was achieved by incubating NSCs with 100µg/ml of SPIO for 12-24 hours. Upon stereotactic transplantation into the healthy side of the brain, SPIO-labeled NSCs were distinctively detected as hypointense signals on T2-weighted images (T2WI), showed sustained survival for up to 4 weeks, and exhibited directional migration to the radiation-injured side of the brain with a speed of 86-127 µm/day. The moving kinetics of grafted NSCs displayed no difference in brains receiving a high (55 Gy) vs. moderate (45 Gy) dose of radiation, but was slower in the right RBI model than in the posterior RBI model. This study shows that NSCs can be effectively labeled by SPIO and traced in vivo by MRI, and that grafted NSCs exhibit directional migration toward RBI sites in a route-dependent but radiation dose-independent manner.

4.
J Cancer ; 8(18): 3795-3802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151967

RESUMO

Background: Tangential irradiation is the most popular postoperative radiotherapy technique for breast cancer. However, irradiation has been related to symptomatic radiation pneumonitis (SRP), which decreases the quality of life of patients. This study investigated the clinical features and dosimetric parameters related to SRP of the ipsilateral lung to identify risk factors for SRP in breast cancer patients after three-dimensional conformal radiation therapy (3D-CRT) with tangential fields. Material and Methods: A total of 515 breast cancer patients were evaluated and divided into two groups: the local-regional irradiation group (259 patients) and the simple local irradiation group (256 patients). Clinical symptoms were registered and patient data collected. The relationship between the incidence of SRP and dosimetric parameters for the ipsilateral lung was assessed within 6 months after 3D-CRT. Dosimetric parameters were compared using t tests. The dosimetric predictors for SRP were estimated using a logistic regression model and receiver operating characteristic curve analysis. Results: In total, 19 patients (3.7%) developed grade 2 SRP. In the local-regional irradiation group, the probability of SRP in the lung body was greater than that in the lung apex (3.9% vs. 1.5%). V20 and V30 were independent predictors for SRP in the local-regional irradiation group (odds ratio = 1.152 and 1.439, both p = 0.030), whereas only V20 was an independent predictor of SRP in the simple local irradiation group (odds ratio = 1.351, p = 0.001). With 39.8% as the optimal threshold for V20 and 25.7% for V30 for local-regional irradiation, SRP could be predicted with an accuracy of 80.3% and 79.9%, a sensitivity of 61.5% and 69.2%, and a specificity of 81.3% and 80.5%, respectively. With 20.2% as the optimal V20 threshold for simple local irradiation, SRP could be predicted with an accuracy of 88.7%, a sensitivity of 83.3% and a specificity of 89.6%. Conclusions: SRP has become a rare complication with mild symptoms and occurs mainly in the lung body. V20 and V30 may be useful dosimetric predictors to evaluate SRP risk of the ipsilateral lung in breast cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa