Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324741

RESUMO

The five volt-class battery is one promising candidate of high energy density lithium-ion batteries. However, it suffers from limited electrochemical performance due to many problems, one of which is Al current collector corrosion. The corrosion greatly affects the electrochemical performance of batteries, so uncovering the Al corrosion mechanism and developing its protection strategy in the 5 V-class battery becomes important. Here, we experimentally realize a corrosion-resistant Al current collector via graphene protection. The experimental and theoretical calculation indicate that graphene can work as a physical barrier to inhibit direct contact between LiPF6-based electrolyte and an Al current collector, reducing the side reactions between Al current collector and HF originated from electrolyte. What is more, graphene increases the Al corrosion reaction potential, raising the difficulty of electrochemical corrosion. These effects improve the electrochemical performance of the 5 V-class battery, especially the rate performance and cycling stability. The work is beneficial for the development of a 5 V-class battery.

2.
Small ; : e2406485, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39314022

RESUMO

The rational design of S-scheme photocatalysts, achieved by serially integrating two different semiconductors, represents a promising strategy for efficient charge separation and amplified photocatalytic performance, yet it remains a challenge. Herein, ZnIn2S4 (ZIS) and oxygen-doped ZnIn2S4 (O-ZIS) nanosheets are chosen to construct a homojunction catalyst architecture. Theoretical simulations alongside comprehensive in situ and ex situ characterizations confirm that ZIS and O-ZIS with noncentrosymmetric layered structures can generate a polarization-induced bulk-internal electric field (IEF) within the crystal. A robust interface-IEF is also created by the strong interfacial interaction between O-ZIS and ZIS with different work functions. Owing to these features, the O-ZIS/ZIS homojunction adopts an S-scheme directional charge transfer route, wherein photoexcited electrons in ZIS and holes in O-ZIS concurrently migrate to their interface and subsequently recombine. This enables spatial charge separation and provides a high driving force for both reduction and oxidation reactions simultaneously. Consequently, such photocatalyst exhibits an H2 evolution rate up to 142.9 µmol h-1 without any cocatalysts, which is 4.6- and 3.4-fold higher than that of pristine ZIS and O-ZIS, respectively. Benzaldehyde is also produced as a value-added oxidation product with a rate of 146.9 µmol h-1. This work offers a new perspective on the design of S-scheme systems.

3.
Small ; 20(6): e2304723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797197

RESUMO

Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.

4.
Small ; 20(31): e2400617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441279

RESUMO

Photocatalytic lignocellulose reforming for H2 production presents a compelling solution to solve environmental and energy issues. However, achieving scalable conversion under benign conditions faces consistent challenges including insufficient active sites for H2 evolution reaction (HER) and inefficient lignocellulose oxidation directly by photogenerated holes. Herein, it is found that Pt single atom-loaded CdS nanosheet (PtSA-CdS) would be an active photocatalyst for lignocellulose-to-H2 conversion. Theoretical and experimental analyses confirm that the valence band of CdS shifts downward after depositing isolated Pt atoms, and the slope of valence band potential on pH for PtSA-CdS is more positive than Nernstian equation. These characteristics allow PtSA-CdS to generate large amounts of •OH radicals even at pH 14, while the capacity is lacking with CdS alone. The employment of •OH/OH- redox shuttle succeeds in relaying photoexcited holes from the surface of photocatalyst, and the •OH radicals can diffuse away to decompose lignocellulose efficiently. Simultaneously, surface Pt atoms, featured with a thermoneutral Δ G H ∗ $\Delta G_{\mathrm{H}}^{\mathrm{*}}$ , would collect electrons to expedite HER. Consequently, PtSA-CdS performs a H2 evolution rate of 10.14 µmol h-1 in 1 m KOH aqueous solution, showcasing a remarkable 37.1-fold enhancement compared to CdS. This work provides a feasible approach to transform waste biomass into valuable sources.

5.
Small ; : e2407159, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363785

RESUMO

Symmetrical batteries hold great promise as cost-effective and safe candidates for future battery technology. However, they realistically suffer low energy density due to the challenge in integrating high specific capacity with high voltage plateau from the limited choice of bipolar electrodes. Herein, a high-voltage all-V2O5 symmetrical battery with clear voltage plateau is conceptualized by decoupling the cathodic/anodic redox reactions based upon the episteme of V2O5 intercalation chemistry. As the proof-of-concept, a hierarchical V2O5-carboncomposite (VO-C) bipolar electrode with boosted electron/ion transport kinetics is fabricated, which shows high performance as both cathode and anode in their precisely clamped working potential windows. Accordingly, the symmetrical full-battery exhibits a high capacity of 174 mAh g-1 along with peak voltage output of above 2.9 V at 0.5C, remarkable capacity retention of 81% from 0.5C to 10C, and good cycling stability of 70% capacity retention after 300 cycles at 5C. Notably, its energy density reaches 429 Wh kg-1 at 0.5C estimated by the cathode mass, which outperforms most of the existing Li/Na/K-based symmetrical batteries. This study leaps forward the performance of symmetrical battery and provides guidance to extend the scope of future battery designs.

6.
Small ; 20(22): e2304786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135879

RESUMO

Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology.

7.
Anticancer Drugs ; 35(2): 163-176, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948318

RESUMO

Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.


Assuntos
Daunorrubicina , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Daunorrubicina/farmacologia , Regulação para Cima , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Apoptose , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/farmacologia , TYK2 Quinase/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 1/farmacologia , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo
8.
J Org Chem ; 89(4): 2364-2374, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38325879

RESUMO

Potassium carbonate-catalyzed (3 + 2) cycloaddition reaction between N-2,2,2-trifluoroethylisatin ketimines and azodicarboxylates has been developed, constructing a series of novel N-heterocycle infused spirooxindoles in good to excellent yields (up to 98%) under milder conditions. The presence of both biologically active oxindole and trifluoromethyl-1,2,4-triazoline moieties in these novel spirocyclic compounds would provide new lead structures in the discovery of heterocyclic compounds with potential pharmaceutical activities.

9.
Nanotechnology ; 35(50)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39284321

RESUMO

Owing to its higher earth element reserve and similar chemical properties to lithium, potassium ion batteries (PIBs) have been regarded as a potential alternative to lithium-ion batteries. And considering the relatively larger ionic radius of potassium, available electrode materials need to be equipped with enough space for volume expansion during charge-discharge cycles, thus graphitic carbon nanomaterials with adjustable layer spacing gradually come into researcher's version. Here with copper nanowires serving as growth template and organic polyvinyl pyrrolidone (PVP) providing carbon source, freestanding and ultra-light graphitic carbon nanotube (GCNT) aerogels were simply assembled and annealed, which were directly used as anodes of PIBs. Annealing parameters (temperature and atmosphere) were adapted to regulate the lattice order and interlayer spacing of GCNTs, and N, O heteroatoms derived from PVP were directly doped into the carbon lattice during thermal annealing, to optimize and enhance the cycle capacity and rate performance of GCNT anodes. The electrochemical potassium storage mechanism of GCNTs was also quantitatively analyzed. Most of the potassium ions are reversibly stored by squeezing into and escaping from the carbon lattice, and simultaneously oxygen-containing functional groups with different chemical states also offer active redox sites and dedicate partial capacity. Therefore, our assembled GCNTs with large lumen are expected to sandwich-like load with active substances efficiently, further constructing next-generation PIBs with excellent performance.

10.
Ecotoxicol Environ Saf ; 278: 116465, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749198

RESUMO

5-Fluorouracil (5-FU), a chemotherapeutic drug used to treat a variety of cancers, can enter the environment through different routes, causing serious public health and environmental concerns. It has been reported that 5-FU exposure adversely affects male reproductive function, and its effects on this system cannot be avoided. In this study, using western blotting and quantitative polymerase chain reaction studies, we found that 5-FU promoted testicular injury by inducing oxidative stress, which was accompanied by the inhibition of nuclear factor erythroid 2-related factor 2/antioxidant response element signaling. Accumulation of reactive oxygen species (ROS) aggravated 5-FU-mediated mitochondrial dysfunction and apoptosis in murine cell lines and testes, indicating oxidative stress and mitochondrial-dependent apoptotic signaling play crucial roles in the damage of spermatogenic cells caused. N-Acetyl-L-cysteine, an antioxidant that scavenges intracellular ROS, protected spermatogenic cells from 5-FU-induced oxidative damage and mitochondrial dysfunction, revealing the important role of ROS in testicular dysfunction caused by 5-FU. We found that 5-FU exposure induces testicular cell apoptosis through ROS-mediated mitochondria pathway in mice. In summary, our findings revealed the reproductive toxicological effect of 5-FU on mice and its mechanism, provided basic data reference for adverse ecological and human health outcomes associated with 5-FU contamination or poisoning.


Assuntos
Apoptose , Dano ao DNA , Fluoruracila , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Testículo , Animais , Masculino , Fluoruracila/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Testículo/efeitos dos fármacos , Testículo/patologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Linhagem Celular
11.
Gen Physiol Biophys ; 43(2): 139-152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477604

RESUMO

This study aimed to elucidate the mechanism of Wenzheng Jiedu Powder Modified Formula (WJPMF) in treating neuropathic pain (NP). Network pharmacology and experimental verification were integrated to explore the therapeutic effects and key targets of WJPMF. Active components, corresponding target genes, and absorption, distribution, metabolism, and excretion (ADME) genes of WJPMF against NP were screened from public databases. Network analysis and molecular docking were conducted to identify key targets and verify binding abilities. In vivo experiments were performed on spared nerve injury (SNI) rats to assess the analgesic effects and regulatory mechanisms of WJPMF. WJPMF significantly improved pain behaviors in SNI rats by regulating ATP-binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor alpha (PPARA), peroxisome proliferator-activated receptor gamma (PPARG), and superoxide dismutase 2 (SOD2) expression, which were key targets involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. WJPMF shows promising therapeutic potential for NP through the modulation of specific targets, offering a novel therapeutic strategy for managing NP.


Assuntos
Líquidos Corporais , Neuralgia , Animais , Ratos , Pós , Farmacologia em Rede , Simulação de Acoplamento Molecular
12.
Small ; : e2307386, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084447

RESUMO

Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2 S4 nanosheets (PtSA -ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in * CH3 CHOH and promote the desorption of * CH3 CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA -ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1 ) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.

13.
Small ; 19(9): e2205092, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534831

RESUMO

Three CoFe-bimetallic oxides with different compositions (termed as CoFeOx -A/N/H) are prepared by thermally treating metal-organic-framework (MOF) precursors under different atmospheres (air, N2, and NaBH4 /N2 ), respectively. With the aid of vast oxygen vacancies (Ov ), cobalt at tetrahedral sites (Co2+ (Th)) in spinel Co3 O4 is diffused into interstitial octahedral sites (Oh) to form rocksalt CoO and ternary oxide CoFe2 O4 has been induced to give the unique defective CoO/CoFe2 O4 heterostructure. The resultant CoFeOx -H exhibits superb electrocatalytic activity toward water oxidation: overpotential at 10 mA cm-2 is 192 mV, which is 122 mV smaller than that of CoFeOx -A. The smaller Tafel slope (42.53 mV dec-1 ) and higher turnover frequency (785.5 h-1 ) suggest fast reaction kinetics. X-ray absorption spectroscopy, ex situ characterizations, and theoretical calculations reveal that defect engineering effectively tunes the electronic configuration to a more active state, resulting in the greatly decreased binding energy of oxo intermediates, and consequently much lower catalytic overpotential. Moreover, the construction of hetero-interface in CoFeOx -H can provide rich active sites and promote efficient electron transfer. This work may shed light on a comprehensive understanding of the modulation of electron configuration of bimetallic oxides and inspire the smart design of high-performance electrocatalysts.

14.
Rheumatology (Oxford) ; 62(3): 1145-1152, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976105

RESUMO

OBJECTIVE: To investigate the efficacy and safety of rituximab (RTX) maintenance therapy compared with traditional immunosuppressive agent (ISA) maintenance therapy in patients with relapsing or refractory SLE. METHODS: It is a prospective observational non-randomized cohort study. The study enrolled SLE patients in four centres who had received at least one course of RTX induction treatment. Patients with a clinical response to RTX were divided into two groups based on their maintenance therapy in the first 12 months: the RTX group and the ISA group. The relapse-free survival times were compared between the two groups. Univariate and multivariate analyses were conducted to identify predictive factors for disease relapse. RESULTS: Among the 82 patients included in the cohort, 67 (81.7%) patients had a clinical response at 6 months. RTX maintenance therapy was applied in 34 (50.7%) patients and ISA maintenance therapy was applied in the remaining 33 (49.3%) patients. After a median follow-up of 24 months, a total of 13 (19.4%) patients had experienced disease relapse, comprising three in the RTX group and 10 in the ISA group. Patients in the RTX group had a higher relapse-free survival rate than patients in the ISA group. Multivariate analysis identified hydroxychloroquine use, RTX maintenance therapy and haematological system involvement as independent predictors for sustained remission. CONCLUSION: This multicentre prospective cohort study demonstrated that long-term RTX maintenance therapy has high efficacy and acceptable safety in relapsing or refractory SLE patients who had a clinical response to RTX induction therapy.


Assuntos
Imunossupressores , Lúpus Eritematoso Sistêmico , Humanos , Rituximab/uso terapêutico , Estudos de Coortes , Estudos Prospectivos , Resultado do Tratamento , Estudos Retrospectivos , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Indução de Remissão
15.
Fish Shellfish Immunol ; 141: 109058, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673389

RESUMO

Prostaglandin-endoperoxide synthase 2 (PTGS2), a crucial enzyme in prostaglandin synthesis, catalyzes the conversion of arachidonic acid to prostaglandins and plays a significant role in the inflammatory response. This investigation aimed to determine the regulatory role of PTGS2a in the innate immune response to bacterial infection in fish. To achieve this objective, the CcPTGS2a gene was identified and characterized in common carp (Cyprinus carpio), and its function in immune defense was investigated. According to the sequence and structural analysis results, CcPTGS2a had an open reading frame of 1806 bp that encoded 602 amino acids. It was estimated that the protein's theoretical molecular weight was 69.0 kDa, and its isoelectric point was 8.10. The structure of CcPTGS2a was observed to be conserved, with an epidermal growth factor domain and a peroxidase domain present. Moreover, the amino acid sequence of CcPTGS2a exhibited significant homology with the amino acid sequences of several fish species. CcPTGS2a mRNA was detected in the healthy tissues of common carp, with higher expression in the head kidney, spleen, gills, and liver. Following the challenges with Aeromonas hydrophila and lipopolysaccharide, CcPTGS2a mRNA showed unique geographic and temporal expression patterns, with significant increases detected in the head kidney, gills, spleen, and liver. Additionally, the recombinant CcPTGS2a protein exhibited detectable bacterial binding to various bacteria. As determined by subcellular localization analysis, CcPTGS2a was predominantly localized in the nucleus and cytoplasm. Furthermore, it was discovered that the overexpression of CcPTGS2a stimulated the up-regulation of ferroptosis-related genes and inflammatory cytokine mRNA expression in fish and EPC (Epithelioma papulosum cyprinid) cells while concurrently reducing the bacterial load of A. hydrophila. In contrast, the interference of CcPTGS2a decreased the mRNA expression of ferroptosis-related genes and inflammatory cytokines in fish and EPC cells and increased the bacterial load of A. hydrophila. Notably, A. hydrophila stimulation resulted in the up-regulation of CcPTGS2a protein expression in EPC cells. These results suggested that CcPTGS2a was involved in the immune response to bacterial infections in common carp.

16.
Fish Shellfish Immunol ; 143: 109222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956798

RESUMO

The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.


Assuntos
Hipóxia , Inflamação , Animais , Oxigênio/metabolismo , Fatores de Transcrição , Peixes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
17.
Rheumatol Int ; 43(10): 1947-1956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37318546

RESUMO

Central retinal artery occlusion (CRAO) is an ophthalmic emergency that typically results in permanent vision damage even despite vigorous treatment. In this article, we describe a case of acute vaso-occlusive retinopathy that presented as the primary manifestation of SLE in the absence of elevated levels of APLAs. After treatment with intravenous steroids, immunoglobulin, intrathecal injection of dexamethasone, plasma exchange, and intravenous cyclophosphamide, SLE was well controlled in the patient, but her vision was permanently lost in the left eye. We also go over a brief review of the currently available literature on retinal vaso-occlusive disease present in SLE. The pathology mechanism of CRAO is related to immune complex-mediated "vasculitis", which is typically associated with neuropsychiatric lupus. However, the literature review identified antiphospholipid antibody syndrome (APS) in only 6 of 19 patients, indicating that other mechanisms besides APS are associated with CRAO. Systemic immunosuppression and anticoagulants are required for the treatment of this severe vaso-occlusive retinopathy. Early recognition and aggressive intervention may prevent severe loss of vision.


Assuntos
Síndrome Antifosfolipídica , Lúpus Eritematoso Sistêmico , Oclusão da Artéria Retiniana , Doenças Retinianas , Humanos , Feminino , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Síndrome Antifosfolipídica/tratamento farmacológico , Oclusão da Artéria Retiniana/etiologia , Oclusão da Artéria Retiniana/complicações , Visão Ocular
18.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982748

RESUMO

Actin filaments are essential for plant adaptation to high temperatures. However, the molecular mechanisms of actin filaments in plant thermal adaptation remain unclear. Here, we found that the expression of Arabidopsis actin depolymerization factor 1 (AtADF1) was repressed by high temperatures. Compared with wild-type seedlings (WT), the mutation of AtADF1 and the overexpression of AtADF1 led to promoted and inhibited plant growth under high temperature conditions, respectively. Further, high temperatures induced the stability of actin filaments in plants. Compared with WT, Atadf1-1 mutant seedlings showed more stability of actin filaments under normal and high temperature conditions, while the AtADF1 overexpression seedlings showed the opposite results. Additionally, AtMYB30 directly bound to the promoter of AtADF1 at a known AtMYB30 binding site, AACAAAC, and promoted the transcription of AtADF1 under high temperature treatments. Genetic analysis further indicated that AtMYB30 regulated AtADF1 under high temperature treatments. Chinese cabbage ADF1 (BrADF1) was highly homologous with AtADF1. The expression of BrADF1 was inhibited by high temperatures. BrADF1 overexpression inhibited plant growth and reduced the percentage of actin cable and the average length of actin filaments in Arabidopsis, which were similar to those of AtADF1 overexpression seedlings. AtADF1 and BrADF1 also affected the expression of some key heat response genes. In conclusion, our results indicate that ADF1 plays an important role in plant thermal adaptation by blocking the high-temperature-induced stability of actin filaments and is directly regulated by MYB30.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Environ Monit Assess ; 195(12): 1519, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993760

RESUMO

Populus euphratica and Tamarix chinensis play a vital role in windbreak and sand fixation, maintaining species diversity and ensuring community stability. Managing and protecting the P. euphratica and T. chinensis forests in the Heihe River's lower reaches is an urgent issue to maintain the desert region's ecological balance. In this study, based on the distribution points of P. euphratica and T. chinensis species and environmental data, MaxEnt and random forest (RF) models were used to characterize the potential distribution areas of P. euphratica and T. chinensis in the lower reaches of the Heihe River. The results showed that the accuracy of the RF model was much higher than that of the MaxEnt model. Both the RF and MaxEnt models showed that the distance to the river greatly influenced the distribution of P. euphratica and T. chinensis. Furthermore, the RF model predicted significantly larger highly suitable areas for both P. euphratica and T. chinensis than the MaxEnt model. Our study enhances the understanding of the species' spatial distribution, offering valuable insights for practical management and conservation strategies.


Assuntos
Populus , Tamaricaceae , Rios , Algoritmo Florestas Aleatórias , Monitoramento Ambiental , China
20.
Eur J Neurosci ; 56(4): 4317-4332, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767003

RESUMO

Postoperative cognitive dysfunction (POCD) is a prevalent disorder after anaesthesia in the elderly patients. Roflumilast (RF), a phosphodiesterase 4 (PDE-4) inhibitor, could improve cognition with no side effects. Here, we sought to explore the efficacy of RF in the improvement of cognitive dysfunction caused by sevoflurane (Sev). Sprague-Dawley rats were anaesthetized, and the hippocampal neurons were treated with Sev to develop in vivo and in vitro POCD models, followed by RF administration. The mechanism of the PKA-CREB and MEK/ERK pathways in the pathogenesis of POCD was explored. Sev impaired the cognitive functions of rats, significantly reduced cyclic adenosine monophosphate (cAMP) concentrations and blocked the PKA-CREB and MEK/ERK pathways. Moreover, the Sev-treated rats and neurons exhibited enhanced apoptosis and reactive oxygen species (ROS). After treatment with RF, rats had better learning and memory function, and the activity of neurons in hippocampus and cortex was improved. Loss-of-function assay indicated that PKA-CREB and MEK/ERK signalling impairment reduced cAMP levels and promoted apoptosis and ROS in rat hippocampus and neurons. Generally, RF promotes neuronal activity in rats after Sev treatment by maintaining cAMP levels and sustaining the activation of PKA-CREB and MEK/ERK pathways. This might offer novel sights for POCD therapy.


Assuntos
Anestesia , Disfunção Cognitiva , Aminopiridinas , Animais , Benzamidas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Ciclopropanos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sevoflurano/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa