Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793997

RESUMO

CMOS image sensor (CIS) semiconductor products are integral to mobile phones and photographic devices, necessitating ongoing enhancements in efficiency and quality for superior photographic outcomes. The presence of white pixels serves as a crucial metric for assessing CIS product performance, primarily arising from metal impurity contamination during the wafer production process or from defects introduced by the grinding blade process. While immediately addressing metal impurity contamination during production presents challenges, refining the handling of defects attributed to grinding blade processing can notably mitigate white pixel issues in CIS products. This study zeroes in on silicon wafer manufacturers in Taiwan, analyzing white pixel defects reported by customers and leveraging machine learning to pinpoint and predict key factors leading to white pixel defects from grinding blade operations. Such pioneering practical studies are rare. The findings reveal that the classification and regression tree (CART) and random forest (RF) models deliver the most accurate predictions (95.18%) of white pixel defects caused by grinding blade operations in a default parameter setting. The analysis further elucidates critical factors like grinding load and torque, vital for the genesis of white pixel defects. The insights garnered from this study aim to arm operators with proactive measures to diminish the potential for customer complaints.

2.
J Clin Med ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610711

RESUMO

Background: Influenza-like illness (ILI) encompasses symptoms similar to influenza, affecting population health. Surveillance, including Google Trends (GT), offers insights into epidemic patterns. Methods: This study used multiple regression models to analyze the correlation between ILI incidents, GT keyword searches, and climate variables during influenza outbreaks. It compared the predictive capabilities of time-series and deep learning models against ILI emergency incidents. Results: The GT searches for "fever" and "cough" were significantly associated with ILI cases (p < 0.05). Temperature had a more substantial impact on ILI incidence than humidity. Among the tested models, ARIMA provided the best predictive power. Conclusions: GT and climate data can forecast ILI trends, aiding governmental decision making. Temperature is a crucial predictor, and ARIMA models excel in forecasting ILI incidences.

3.
J Clin Med ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673554

RESUMO

Background: The increase in the global population of hemodialysis patients is linked to aging demographics and the prevalence of conditions such as arterial hypertension and diabetes mellitus. While previous research in hemodialysis has mainly focused on mortality predictions, there is a gap in studies targeting short-term hospitalization predictions using detailed, monthly blood test data. Methods: This study employs advanced data preprocessing and machine learning techniques to predict hospitalizations within a 30-day period among hemodialysis patients. Initial steps include employing K-Nearest Neighbor (KNN) imputation to address missing data and using the Synthesized Minority Oversampling Technique (SMOTE) to ensure data balance. The study then applies a Support Vector Machine (SVM) algorithm for the predictive analysis, with an additional enhancement through ensemble learning techniques, in order to improve prediction accuracy. Results: The application of SVM in predicting hospitalizations within a 30-day period among hemodialysis patients resulted in an impressive accuracy rate of 93%. This accuracy rate further improved to 96% upon incorporating ensemble learning methods, demonstrating the efficacy of the chosen machine learning approach in this context. Conclusions: This study highlights the potential of utilizing machine learning to predict hospital readmissions within a 30-day period among hemodialysis patients based on monthly blood test data. It represents a significant leap towards precision medicine and personalized healthcare for this patient group, suggesting a paradigm shift in patient care through the proactive identification of hospitalization risks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa