Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 70(5): 961-974, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084774

RESUMO

Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Animais , Astrócitos , Ratos , Ratos Sprague-Dawley , Sinapses
2.
Glia ; 67(2): 246-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565755

RESUMO

Astrocytes express a complex repertoire of intracellular Ca2+ transients (events) that represent a major form of signaling within individual cells and in astrocytic syncytium. These events have different spatiotemporal profiles, which are modulated by neuronal activity. Spontaneous Ca2+ events appear more frequently in distal astrocytic processes and independently from each other. However, little is known about the mechanisms underlying such subcellular distribution of the Ca2+ events. Here, we identify the initiation points of the Ca2+ events within the territory of single astrocytes expressing genetically encoded Ca2+ indicator GCaMP2 in culture or in hippocampal slices. We found that most of the Ca2+ events start in an optimal range of thin distal processes. Our mathematical model demonstrated that a high surface-to-volume of the thin processes leads to increased amplitude of baseline Ca2+ fluctuations caused by a stochastic opening of Ca2+ channels in the plasma membrane. Suprathreshold fluctuations trigger Ca2+ -induced Ca2+ release from the Ca2+ stores by activating inositol 1,4,5-trisphosphate (IP3 ) receptors. In agreement with the model prediction, the spontaneous Ca2+ events frequency depended on the extracellular Ca2+ concentration. Astrocytic depolarization by high extracellular K+ increased the frequency of the Ca2+ events through activation of voltage-gated Ca2+ channels in cultured astrocytes. Our results suggest that the morphological profile of the astrocytic processes is responsible for tuning of the Ca2+ events frequency. Therefore, structural plasticity of astrocytic processes can be directly translated into changes in astrocytic Ca2+ signaling. This may be important for both physiological and pathological astrocyte remodeling.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Benzilaminas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácidos Fosfínicos/farmacologia , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Transfecção
3.
J Neurosci ; 34(29): 9789-802, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031416

RESUMO

Neuronal nAChRs in the medial habenula (MHb) to the interpeduncular nucleus (IPN) pathway are key mediators of nicotine's aversive properties. In this paper, we report new details regarding nAChR anatomical localization and function in MHb and IPN. A new group of knock-in mice were created that each expresses a single nAChR subunit fused to GFP, allowing high-resolution mapping. We find that α3 and ß4 nAChR subunit levels are strong throughout the ventral MHb (MHbV). In contrast, α6, ß2, ß3, and α4 subunits are selectively found in some, but not all, areas of MHbV. All subunits were found in both ChAT-positive and ChAT-negative cells in MHbV. Next, we examined functional properties of neurons in the lateral and central part of MHbV (MHbVL and MHbVC) using brain slice patch-clamp recordings. MHbVL neurons were more excitable than MHbVC neurons, and they also responded more strongly to puffs of nicotine. In addition, we studied firing responses of MHbVL and MHbVC neurons in response to bath-applied nicotine. Cells in MHbVL, but not those in MHbVC, increased their firing substantially in response to 1 µm nicotine. Additionally, MHbVL neurons from mice that underwent withdrawal from chronic nicotine were less responsive to nicotine application compared with mice withdrawn from chronic saline. Last, we characterized rostral and dorsomedial IPN neurons that receive input from MHbVL axons. Together, our data provide new details regarding neurophysiology and nAChR localization and function in cells within the MHbV.


Assuntos
Expressão Gênica/genética , Habenula/citologia , Habenula/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Habenula/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nicotina/farmacologia , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
4.
Mol Pharmacol ; 88(6): 1035-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26429939

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are the molecular target of nicotine. nAChRs in the medial habenula (MHb) have recently been shown to play a role in nicotine dependence, but it is not clear which nAChR subtypes or MHb neuron types are most important. To identify MHb nAChRs and/or cell types that play a role in nicotine dependence, we studied these receptors and cells with brain slice electrophysiology using both acute and chronic nicotine application. Cells in the ventroinferior (MHbVI) and ventrolateral MHb (MHbVL) subregions expressed functional nAChRs with different pharmacology. Further, application of nicotine to cells in these subregions led to different action potential firing patterns. The latter result was correlated with a differing ability of nicotine to induce nAChR desensitization. Chronic nicotine caused functional upregulation of nAChRs selectively in MHbVI cells, but did not change nAChR function in MHbVL. Importantly, firing responses were also differentially altered in these subregions following chronic nicotine. MHbVI neurons treated chronically with nicotine exhibited enhanced basal pacemaker firing but a blunted nicotine-induced firing response. MHbVL neurons did not change their firing properties in response to chronic nicotine. Together, these results suggest that acute and chronic nicotine differentially affect nAChR function and output of cells in MHb subregions. Because the MHb extensively innervates the interpeduncular nucleus, an area critical for both affective and somatic signs of withdrawal, these results could reflect some of the neurophysiological changes thought to occur in the MHb to the interpeduncular nucleus circuit in human smokers.


Assuntos
Habenula/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/biossíntese , Tabagismo/metabolismo , Animais , Feminino , Habenula/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Nicotina/administração & dosagem , Técnicas de Cultura de Órgãos , Gravidez
5.
Methods ; 68(2): 308-16, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657185

RESUMO

Two-photon florescence imaging is widely used to perform morphological analysis of subcellular structures such as neuronal dendrites and spines, astrocytic processes etc. This method is also indispensable for functional analysis of cellular activity such as Ca2+ dynamics. Although spatial resolution of laser scanning two-photon system is greater than that of confocal or wide field microscope, it is still diffraction limited. In practice, the resolution of the system is more affected by its signal-to-noise ratio (SNR) than the diffraction limit. Thus, various approaches aiming to increase the SNR in two-photon imaging are desirable and can potentially save on building costly super-resolution imaging system. Here we analyze the statistics of noise in the two-photon florescence images of hippocampal astrocytes expressing genetically encoded Ca2+ sensor GCaMP2 and show that it can be reasonably well approximated using the same models which are used for describing noise in images acquired with digital cameras. This allows to use denoising methods available for wide field imaging on two-photon images. Particularly we demonstrate that the Block-Matching 3D (BM3D) filter can significantly improve the quality of two-photon fluorescence images so small details such as astrocytic processes can be easier identified. Moreover, denoising of the images with BM3D yields less noisy Ca2+ signals in astrocytes when denoising of the images with Gaussian filter.


Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Imagem Óptica/métodos , Algoritmos , Cálcio/química , Fluorescência , Humanos , Fótons , Razão Sinal-Ruído
6.
Mol Pharmacol ; 84(3): 393-406, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788655

RESUMO

Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6ß2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6ß2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6ß2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6ß2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6ß2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6ß2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.


Assuntos
Dopamina/metabolismo , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Receptores de AMPA/fisiologia , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação , Animais , Técnicas In Vitro , Ativação do Canal Iônico , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia
7.
Mol Ther Methods Clin Dev ; 31: 101158, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38074413

RESUMO

Over the last decade, there has been a growing interest in intrabodies and their therapeutic potential. Intrabodies are antibody fragments that are expressed inside a cell to target intracellular antigens. In the context of intracellular protein misfolding and aggregation, such as tau pathology in Alzheimer's disease, intrabodies have become an interesting approach as there is the possibility to target early stages of aggregation. As such, we engineered three anti-tau monoclonal antibodies into single-chain variable fragments for cytoplasmic expression and activity: PT51, PT77, and hTau21. Due to the reducing environment of the cytoplasm, single-chain variable fragment (scFv) aggregation is commonly observed. Therefore, we also performed complementarity-determining region (CDR) grafting into three different stable frameworks to rescue solubility and intracellular binding. All three scFvs retained binding to tau after cytoplasmic expression in HEK293 cells, in at least one of the frameworks. Subsequently, we show their capacity to interfere with either mouse or mutant human tau aggregation in two different primary mouse neuron models and organotypic hippocampal slice cultures. Collectively, our work extends the current knowledge on intracellular tau targeting with intrabodies, providing three scFv intrabodies that can be used as immunological tools to target tau inside cells.

8.
Stem Cell Res ; 54: 102386, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34229210

RESUMO

Neurogenin 2 encodes a neural-specific transcription factor (NGN2) able to drive neuronal fate on somatic and stem cells. NGN2 is expressed in neural progenitors within the developing central and peripheral nervous systems. Overexpression of NGN2 in human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells has been shown to efficiently trigger conversion to neurons. Here we describe two gene-edited hiPSC lines harbouring a doxycycline (DOX)-inducible cassette in the AAVS1 locus driving expression of NGN2 (BIONi010-C-13) or NGN2-T2A-GFP (BIONi010-C-15). By introducing NGN2-expressing cassette, we reduce variability associated with conventional over-expression methods such as viral transduction, making these lines amenable for scale-up production and screening processes. DOX-treated hiPSCs convert to neural phenotype within one week and display the expression of structural neuronal markers such as Beta-III tubulin and tau. We performed functional characterization of NGN2-neurons co-cultured with hiPSC-derived astrocytes in a "fully-humanized" set up. Passive properties of NGN2-neurons were indistinguishable from mouse primary cells while displaying variable activity in extracellular recordings performed in multi-electrode arrays (MEAs). We demonstrate that hiPSC-derived astrocytes and neurons can be co-cultured and display functional properties comparable to the gold standard used in electrophysiology. Both lines are globally available via EBiSC repository at https://cells.ebisc.org/.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Astrócitos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Camundongos , Neurônios
9.
Stem Cell Rev Rep ; 17(5): 1855-1873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33982246

RESUMO

Astrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells. Inducible (i)SOX9-astrocytes display functional properties comparable to primary human astrocytes comprising glutamate uptake, induced calcium responses and cytokine/growth factor secretion. Importantly, electrophysiological properties of iNGN2-neurons co-cultured with iSOX9-astrocytes are indistinguishable from gold-standard murine primary cultures. The high yield, fast timing and the possibility to cryopreserve iSOX9-astrocytes without losing functional properties makes them suitable for scaled-up production for high-throughput analyses. Our findings represent a step forward to an all-human iPSC-derived neural model for drug development in neuroscience and towards the reduction of animal use in biomedical research.


Assuntos
Astrócitos , Células-Tronco Neurais , Animais , Astrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Fatores de Transcrição SOX9/metabolismo
10.
Mol Cell Neurosci ; 42(1): 56-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19463951

RESUMO

Noradrenergic (NAergic) A7 neurons are involved in modulating nociception by releasing noradrenaline in the dorsal spinal cord. Since NAergic A7 neurons receive dense Substance P (Sub-P) releasing terminals from ventromedial medulla, here we tested the effect of Sub-P on them. Bath application of Sub-P induced an inward current (I(Sub-P)) in NAergic neurons, which was significantly blocked by Neurokinin 1 (NK1) receptor antagonist. The I(Sub-P) was reversed at approximately -20 mV, blocked by several TRP channel blockers, enhanced by OAG and negatively regulated by PKC. Immunohistochemistry staining showed that NAergic A7 neurons express high level of TRPC6 channel proteins, which is consistent with pharmacological properties of I(Sub-P) shown above, as TRPC6 channel is shown to be augmented by OAG and inhibited by PKC. In conclusion, the above results provide mechanism underlying postsynaptic action of Sub-P on NAergic A7 neurons and a role for TRPC6 channel in NAergic pain modulation.


Assuntos
Neurônios/fisiologia , Norepinefrina/metabolismo , Receptores da Neurocinina-1/fisiologia , Canais de Cátion TRPC/metabolismo , Animais , Animais Recém-Nascidos , Antineoplásicos/farmacologia , Dopamina beta-Hidroxilase/metabolismo , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Isoindóis/farmacologia , Lisina/análogos & derivados , Lisina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Antagonistas dos Receptores de Neurocinina-1 , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp/métodos , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Substância P/farmacologia , Suramina/farmacologia
11.
Arch Gerontol Geriatr ; 81: 25-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30496871

RESUMO

OBJECTIVE: Due to the presence of neuropsychiatric behaviors and the decreased ability for activities of daily living (ADLs), family caregivers experience high burden levels in caring for people with dementia (PWD). This study sought to test the mediating role of caregiving hours in association with PWDs' ability for basic activities of daily living (BADL) function or neuropsychiatric behaviors and caregiver burden. METHODS: This study used two waves of survey data, collected between 2013 and 2016, from 186 PWD-caregiver dyads in a dementia clinic at a teaching hospital in southern Taiwan. Two sets of multiple linear regression models were used to analyze the relationships between the changes in patients' BADL function, patients' neuropsychiatric behaviors, caregiving hours in ADL (including BADL and Instrumental ADL), and caregiver burden (measured using Zarit Burden Interview). Bootstrapping methods were used to detect the mediating effects of caregiving hours in ADL if the 95% confidence interval (CI) did not cover 0. RESULTS: Caregiving hours in BADL mediated the relationship of PWDs' BADL function and caregiver burden (effect = -0.0137, 95% bootstrap CI = -0.0379, -0.0003). However, such mediating effects were not found in the relationship of PWDs' neuropsychiatric behaviors and caregiver burden. CONCLUSIONS: In order to relieve caregiver burden, respite care services for caregivers for PWD should target services that assist with PWD's BADL.


Assuntos
Atividades Cotidianas , Cuidadores/psicologia , Demência/psicologia , Idoso , Sintomas Comportamentais/psicologia , Feminino , Humanos , Entrevistas como Assunto , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo
12.
Front Microbiol ; 10: 602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972050

RESUMO

Due to the high incidence of nosocomial Candida albicans infection, the first-line drugs for C. albicans infection have been heavily used, and the emergence of drug-resistant strains has gradually increased. Thus, a new antifungal drug or therapeutic method is needed. Chitosan, a product of chitin deacetylation, is considered to be potentially therapeutic for fungal infections because of its excellent biocompatibility, biodegradability and low toxicity. The biocidal action of chitosan against C. albicans shows great commercial potential, but the exact mechanisms underlying its antimicrobial activity are unclear. To reveal these mechanisms, mutant library screening was performed. ADA2 gene, which encodes a histone acetylation coactivator in the SAGA complex, was identified. Transmission electronic microscopy images showed that the surface of chitosan-treated ada2Δ cells was substantially disrupted and displayed an irregular morphology. Interestingly, the cell wall of ada2Δ cells was significantly thinner than that of wild-type cells, with a thickness similar to that seen in the chitosan-treated wild-type strain. Although ADA2 is required for chitosan tolerance, expression of ADA2 and several Ada2-mediated cell wall-related genes (ALS2, PGA45, and ACE2) and efflux transporter genes (MDR1 and CDR1) were significantly inhibited by chitosan. Furthermore, GCN5 encoding a SAGA complex catalytic subunit was inhibited by chitosan, and gcn5Δ cells exhibited phenotypes comparable to those of ada2Δ cells in response to chitosan and other cell surface-disrupting agents. This study demonstrated that a potential antifungal mechanism of chitosan against C. albicans operates by inhibiting SAGA complex gene expression, which decreases the protection of the cell surface against chitosan.

13.
J Phys Chem Lett ; 8(9): 1932-1936, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28407470

RESUMO

Detecting membrane potentials is critical for understanding how neuronal networks process information. We report a vibrational spectroscopic signature of neuronal membrane potentials identified through hyperspectral stimulated Raman scattering (SRS) imaging of patched primary neurons. High-speed SRS imaging allowed direct visualization of puff-induced depolarization of multiple neurons in mouse brain slices, confirmed by simultaneous calcium imaging. The observed signature, partially dependent on sodium ion influx, is interpreted as ion interactions on the CH3 Fermi resonance peak in proteins. By implementing a dual-SRS balanced detection scheme, we detected single action potentials in electrically stimulated neurons. These results collectively demonstrate the potential of sensing neuronal activities at multiple sites with a label-free vibrational microscope.


Assuntos
Potenciais da Membrana , Neurônios/fisiologia , Vibração , Potenciais de Ação , Animais , Encéfalo , Camundongos , Microscopia , Sódio , Análise Espectral , Análise Espectral Raman
14.
PLoS One ; 11(2): e0148779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859891

RESUMO

OBJECTIVE: Given the shortage of cost-of-illness studies in dementia outside of the Western population, the current study estimated the annual cost of dementia in Taiwan and assessed whether different categories of care costs vary by severity using multiple disease-severity measures. METHODS: This study included 231 dementia patient-caregiver dyads in a dementia clinic at a national university hospital in southern Taiwan. Three disease measures including cognitive, functional, and behavioral disturbances were obtained from patients based on medical history. A societal perspective was used to estimate the total costs of dementia according to three cost sub-categories. The association between dementia severity and cost of care was examined through bivariate and multivariate analyses. RESULTS: Total costs of care for moderate dementia patient were 1.4 times the costs for mild dementia and doubled from mild to severe dementia among our community-dwelling dementia sample. Multivariate analysis indicated that functional declines had a greater impact on all cost outcomes as compared to behavioral disturbance, which showed no impact on any costs. Informal care costs accounted for the greatest share in total cost of care for both mild (42%) and severe (43%) dementia patients. CONCLUSIONS: Since the total costs of dementia increased with severity, providing care to delay disease progression, with a focus on maintaining patient physical function, may reduce the overall cost of dementia. The greater contribution of informal care to total costs as opposed to social care also suggests a need for more publicly-funded long-term care services to assist family caregivers of dementia patients in Taiwan.


Assuntos
Demência/economia , Custos de Cuidados de Saúde , Idoso , Idoso de 80 Anos ou mais , Cuidadores/economia , Serviços de Saúde Comunitária/economia , Efeitos Psicossociais da Doença , Demência/psicologia , Demência/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Índice de Gravidade de Doença , Taiwan
15.
Cell Calcium ; 55(2): 119-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24484772

RESUMO

Astrocytes produce a complex repertoire of Ca2+ events that coordinate their major functions. The principle of Ca2+ events integration in astrocytes, however, is unknown. Here we analyze whole Ca2+ events, which were defined as spatiotemporally interconnected transient Ca2+ increases. Using such analysis in single hippocampal astrocytes in culture and in slices we found that spreads and durations of Ca2+ events follow power law distributions, a fingerprint of scale-free systems. A mathematical model demonstrated that such Ca2+ dynamics can arise from intracellular inositol-3-phosphate diffusion. The power law exponent (α) was decreased by activation of metabotropic glutamate receptors (mGluRs) either by specific receptor agonist or by low frequency stimulation of glutamatergic fibers in hippocampal slices. Decrease in α indicated an increase in proportion of large Ca2+ events. Notably, mGluRs activation did not increase the frequency of whole Ca2+ events. This result suggests that neuronal activity does not trigger new Ca2+ events in astrocytes (detectable by our methods), but modulates the properties of existing ones. Thus, our results provide a new perspective on how astrocyte responds to neuronal activity by changing its Ca2+ dynamics, which might further affect local network by triggering release of gliotransmitters and by modulating local blood flow.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Hipocampo/metabolismo , Animais , Astrócitos/citologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos/citologia , Hipocampo/citologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Microscopia Confocal , Modelos Teóricos , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Imagem com Lapso de Tempo
16.
Mol Brain ; 6: 6, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356992

RESUMO

BACKGROUND: Neuronal activity alters calcium ion (Ca2+) dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, "IP3 sponge", attenuates astrocytic Ca2+ signaling. RESULTS: Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic 'protection' of the synapses facilitated glutamate 'spillover', which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. CONCLUSIONS: Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Sinapses/metabolismo , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Medo/efeitos dos fármacos , Glutamatos/metabolismo , Glutationa Transferase/metabolismo , Inositol 1,4,5-Trifosfato/farmacologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Sinapses/efeitos dos fármacos
17.
Front Cell Neurosci ; 7: 135, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009556

RESUMO

Glutamate uptake, mediated by electrogenic glutamate transporters largely localized in astrocytes, is responsible for the clearance of glutamate released during excitatory synaptic transmission. Glutamate uptake also determines the availability of glutamate for extrasynaptic glutamate receptors. The efficiency of glutamate uptake is commonly estimated from the amplitude of transporter current recorded in astrocytes. We recorded currents in voltage-clamped hippocampal CA1 stratum radiatum astrocytes in rat hippocampal slices induced by electrical stimulation of the Schaffer collaterals. A Ba(2+)-sensitive K(+) current mediated by inward rectifying potassium channels (Kir) accompanied the transporter current. Surprisingly, Ba(2+) not only suppressed the K(+) current and changed holding current (presumably, mediated by Kir) but also increased the transporter current at lower concentrations. However, Ba(2+) did not significantly increase the uptake of aspartate in cultured astrocytes, suggesting that increase in the amplitude of the transporter current does not always reflect changes in glutamate uptake.

18.
Cell Rep ; 5(4): 941-51, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24268779

RESUMO

Synaptic NMDA receptors (NMDARs) carry inward Ca(2+) current responsible for postsynaptic signaling and plasticity in dendritic spines. Whether the concurrent K(+) efflux through the same receptors into the synaptic cleft has a physiological role is not known. Here, we report that NMDAR-dependent K(+) efflux can provide a retrograde signal in the synapse. In hippocampal CA3-CA1 synapses, the bulk of astrocytic K(+) current triggered by synaptic activity reflected K(+) efflux through local postsynaptic NMDARs. The local extracellular K(+) rise produced by activation of postsynaptic NMDARs boosted action potential-evoked presynaptic Ca(2+) transients and neurotransmitter release from Schaffer collaterals. Our findings indicate that postsynaptic NMDAR-mediated K(+) efflux contributes to use-dependent synaptic facilitation, thus revealing a fundamental form of retrograde synaptic signaling.


Assuntos
Transporte de Íons/fisiologia , Potássio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmissores/metabolismo , Potenciais de Ação , Animais , Astrócitos/metabolismo , Cálcio/química , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa