Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467553

RESUMO

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/química , Peptídeos/farmacologia , Peptídeos/química , Ácido Gálico/farmacologia , Ácido Gálico/química , Antibacterianos/química
2.
PLoS One ; 10(8): e0135070, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275152

RESUMO

Atopic dermatitis (AD) is a widespread and difficult to treat allergic skin disease and is a tough challenge for healthcare. In this study, we investigated whether allergen-specific immunotherapy (ASIT) with a monomeric allergoid obtained by succinylation of ovalbumin (sOVA) is effective in a mouse model of atopic dermatitis. An experimental model of AD was reproduced by epicutaneous sensitization with ovalbumin (OVA). ASIT was performed with subcutaneous (SC) administration of increasing doses of OVA or sOVA. The levels of anti-OVA antibodies, as well as cytokines, were detected by ELISA. Skin samples from patch areas were taken for histologic examination. ASIT with either OVA or sOVA resulted in a reduction of both the anti-OVA IgE level and the IgG1/IgG2a ratio. Moreover, ASIT with sOVA increased the IFN-γ level in supernatants after splenocyte stimulation with OVA. Histologic analysis of skin samples from the sites of allergen application showed that ASIT improved the histologic picture by decreasing allergic inflammation in comparison with untreated mice. These data suggest that ASIT with a succinylated allergen represents promising approach for the treatment of AD.


Assuntos
Dermatite Atópica/terapia , Dessensibilização Imunológica/métodos , Extratos Vegetais/imunologia , Alergoides , Animais , Formação de Anticorpos , Citocinas/sangue , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/química , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa