Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(28): 11565-70, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798446

RESUMO

Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets.


Assuntos
Proteínas de Bactérias/efeitos dos fármacos , Cumarínicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Peixe-Zebra
2.
J Biol Chem ; 287(29): 24228-38, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22637476

RESUMO

One of the mitogen-activated protein kinases, p38, has been found to play a crucial role in various inflammatory responses. In this study, we analyzed the roles of p38α in multiple sclerosis, using an animal model, experimental autoimmune encephalomyelitis (EAE). p38α(+/-) mice (p38α(-/-) showed embryonic lethality) showed less severe neurological signs than WT mice. Adoptive transfer of lymph node cells (LNC) from sensitized WT mice with MOG(35-55) to naive WT-induced EAE was much more severe compared with the case using LNC from sensitized p38α(+/-) mice. Comprehensive analysis of cytokines from MOG(35-55)-challenged LNC by Western blot array revealed that production of IL-17 was significantly reduced by a single copy disruption of the p38α gene or a p38 inhibitor. Likewise, by a luciferase reporter assay, an electrophoresis mobility shift assay, and characterization of the relationship between p38 activity and IL-17 mRNA expression, we confirmed that p38 positively regulates transcription of the Il17 gene. Furthermore, oral administration of a highly specific p38α inhibitor (UR-5269) to WT mice at the onset of EAE markedly suppressed the progression of EAE compared with a vehicle group. These results suggest that p38α participates in the pathogenesis of EAE through IL-17 induction.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Inibidores Enzimáticos/uso terapêutico , Feminino , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Regiões Promotoras Genéticas , Estabilidade de RNA/genética
3.
Bioorg Med Chem Lett ; 23(22): 6052-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24103299

RESUMO

In an effort to develop new and potent agents for therapy against tuberculosis, a high-throughput screen was performed against Mycobacterium tuberculosis strain H37Rv. Two 6-aryl-5,7-dimethyl-4-phenylcoumarin compounds 1a and 1b were found with modest activity. A series of coumarin derivatives were synthesized to improve potency and to investigate the structure-activity relationship of the series. Among them, compounds 1o and 2d showed improved activity with IC90 of 2 µM and 0.5 µM, respectively. Further optimization provided compound 3b with better physiochemical properties with IC90 0.4 µM which had activity in a mouse model of infection. The role of the conformation of the 4- and 6-aryl substituents is also described.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Animais , Antituberculosos/síntese química , Cumarínicos/síntese química , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Conformação Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
4.
ACS Chem Biol ; 7(8): 1377-84, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22577943

RESUMO

Despite the urgent need for new antitubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new targets will be required. Here we describe our investigations using whole cell screening of a diverse collection of small molecules as a methodology for identifying novel inhibitors that target new pathways for Mycobacterium tuberculosis drug discovery. We find that conducting primary screens using model mycobacterial species may limit the potential for identifying new inhibitors with efficacy against M. tuberculosis. In addition, we confirm the importance of developing in vitro assay conditions that are reflective of in vivo biology for maximizing the proportion of hits from whole cell screening that are likely to have activity in vivo. Finally, we describe the identification and characterization of two novel inhibitors that target steps in M. tuberculosis cell wall biosynthesis. The first is a novel benzimidazole that targets mycobacterial membrane protein large 3 (MmpL3), a proposed transporter for cell wall mycolic acids. The second is a nitro-triazole that inhibits decaprenylphosphoryl-ß-D-ribose 2'-epimerase (DprE1), an epimerase required for cell wall biosynthesis. These proteins are both among the small number of new targets that have been identified by forward chemical genetics using resistance generation coupled with genome sequencing. This suggests that methodologies currently employed for screening and target identification may lead to a bias in target discovery and that alternative methods should be explored.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/metabolismo , Antituberculosos/química , Bioquímica/métodos , Parede Celular/metabolismo , Química Farmacêutica/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Glicerol/química , Proteínas de Fluorescência Verde/metabolismo , Testes de Sensibilidade Microbiana , Modelos Químicos , Mutação , Mycobacterium tuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa