Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brain ; 147(2): 486-504, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776516

RESUMO

The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.


Assuntos
Processamento Alternativo , Atrofias Olivopontocerebelares , Ataxias Espinocerebelares , Animais , Camundongos , Processamento Alternativo/genética , Cerebelo , Mutação , Progressão da Doença , Expansão das Repetições de Trinucleotídeos
2.
Exp Brain Res ; 242(2): 321-336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059986

RESUMO

Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.


Assuntos
Anedonia , Doença de Parkinson , Humanos , Ratos , Animais , Anedonia/fisiologia , Ratos Wistar , Tirosina 3-Mono-Oxigenase , Qualidade de Vida , Doença de Parkinson/patologia , Oxidopamina , Antidepressivos , Sacarose , Modelos Animais de Doenças
3.
J Neuroinflammation ; 18(1): 152, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229727

RESUMO

BACKGROUND: The immune pathways in Alzheimer's disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown. METHODS: In this study, we examined the numbers and functional capability of ILC2 from the triple transgenic AD mice (3xTg-AD) and control wild-type mice. We investigated the effects of treatment with IL-5, a cytokine produced by ILC2, on the cognitive function of 3xTg-AD mice. RESULTS: We demonstrate that brain-associated ILC2 are numerically and functionally defective in the triple transgenic AD mouse model (3xTg-AD). The numbers of brain-associated ILC2 were greatly reduced in 7-month-old 3xTg-AD mice of both sexes, compared to those in age- and sex-matched control wild-type mice. The remaining ILC2 in 3xTg-AD mice failed to efficiently produce the type 2 cytokine IL-5 but gained the capability to express a number of proinflammatory genes. Administration of IL-5, a cytokine produced by ILC2, transiently improved spatial recognition and learning in 3xTg-AD mice. CONCLUSION: Our results collectively indicate that numerical and functional deficiency of ILC2 might contribute to the cognitive impairment of 3xTg-AD mice.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos
4.
Exp Physiol ; 106(4): 1038-1060, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33512049

RESUMO

NEW FINDINGS: What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT: Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.


Assuntos
Plexo Celíaco , Colite , Doenças Inflamatórias Intestinais , Animais , Plexo Celíaco/metabolismo , Plexo Celíaco/patologia , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/metabolismo , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/terapia , Ratos
5.
Neuromodulation ; 23(4): 515-524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32369255

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a well-accepted treatment of Parkinson's disease (PD). Motor phenotypes include tremor-dominant (TD), akinesia-rigidity (AR), and postural instability gait disorder (PIGD). The mechanism of action in how DBS modulates motor symptom relief remains unknown. OBJECTIVE: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to determine whether the functional activity varies in response to DBS depending on PD phenotypes. MATERIALS AND METHODS: Subjects underwent an fMRI scan with DBS cycling ON and OFF. The effects of DBS cycling on BOLD activation in each phenotype were documented through voxel-wise analysis. For each region of interest, ANOVAs were performed using T-values and covariate analyses were conducted. Further, a correlation analysis was performed comparing stimulation settings to T-values. Lastly, T-values of subjects with motor improvement were compared to those who worsened. RESULTS: As a group, BOLD activation with DBS-ON resulted in activation in the motor thalamus (p < 0.01) and globus pallidus externa (p < 0.01). AR patients had more activation in the supplementary motor area (SMA) compared to PIGD (p < 0.01) and TD cohorts (p < 0.01). Further, the AR cohort had more activation in primary motor cortex (MI) compared to the TD cohort (p = 0.02). Implanted nuclei (p = 0.01) and phenotype (p = <0.01) affected activity in MI and phenotype alone affected SMA activity (p = <0.01). A positive correlation was seen between thalamic activation and pulse-width (p = 0.03) and between caudate and total electrical energy delivered (p = 0.04). CONCLUSIONS: These data suggest that DBS modulates network activity differently based on patient motor phenotype. Improved understanding of these differences may further our knowledge about the mechanisms of DBS action on PD motor symptoms and to optimize treatment.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo
6.
Neuromodulation ; 20(5): 471-477, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493348

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN DBS) is an established treatment in Parkinson's disease (PD). We investigate the effect of eye opening on neuronal activity and local field potentials (LFPs) in the STN. METHODS: We prospectively enrolled 25 PD patients undergoing STN DBS in our institution. During DBS, single-unit activity (SUA) and LFPs were measured when eyes were open and closed. As movement is known to result in changes in LFPs, we tested response to eye opening in the presence and absence of movement. RESULTS: Neither eye state nor arm movement has a significant influence on SUA recordings. There is a statistically significant interaction between eye state and arm movement (p < 0.05). In the presence of movement, STN SUA increase when eyes open (p < 0.05). When eyes are closed, STN SUA decrease with movement (p < 0.05). STN theta LFP oscillations decrease when eyes are open compared to closed, irrespective of movement status (p < 0.05). DISCUSSION: STN activity is influenced by eye state and arm movement. It is unclear whether this is attributed to a change in the STN's role in oculomotor control or from a change in attentional state. Understanding how physiologic normal activity alters neural activity is critical for the optimization of DBS therapy, particularly in closed-loop neuromodulation.


Assuntos
Potenciais de Ação/fisiologia , Estimulação Encefálica Profunda/métodos , Movimentos Oculares/fisiologia , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Estudos Prospectivos
7.
Neuromodulation ; 19(7): 698-707, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27284636

RESUMO

BACKGROUND: Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). OBJECTIVE: In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. METHODS: We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. RESULTS: In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). DISCUSSION: Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits.


Assuntos
Potenciais de Ação/fisiologia , Gânglios da Base/citologia , Potenciais Somatossensoriais Evocados/fisiologia , Neurônios/fisiologia , Doença de Parkinson , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Feminino , Globo Pálido/fisiologia , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Dor/etiologia , Dor/fisiopatologia , Doença de Parkinson/terapia , Estimulação Física/efeitos adversos , Núcleo Subtalâmico/fisiologia , Temperatura
8.
Eur J Neurosci ; 42(4): 2061-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26082992

RESUMO

Chronic pain is a major complaint for up to 85% of Parkinson's disease patients; however, it often not identified as a symptom of Parkinson's disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinson's patients but how this occurs remains unclear. Studies have shown both Parkinson's patients and 6-hydroxydopamine-lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6-hydroxydopamine-lesioned rats. Sprague-Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail-flick and hot-plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6-hydroxydopamine-lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6-hydroxydopamine-lesioned rats (hot-plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low-frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high-frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6-hydroxydopamine-lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low-frequency stimulation when treating Parkinson's patients where pain remains the predominant complaint.


Assuntos
Estimulação Encefálica Profunda/métodos , Hiperalgesia/terapia , Limiar da Dor/fisiologia , Núcleo Subtalâmico/fisiologia , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Lateralidade Funcional , Hiperalgesia/etiologia , Masculino , Oxidopamina/toxicidade , Limiar da Dor/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/terapia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Estatísticas não Paramétricas , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(27): 11274-9, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690381

RESUMO

Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases dramatically in anoxic turtle brain. We investigated this possibility in turtle cortical neurons exposed to anoxia and/or GABA(A/B) receptor (GABAR) modulators. Anoxia increased endogenous slow phasic GABAergic activity, and both anoxia and GABA reversibly induced SA by increasing GABA(A)R-mediated postsynaptic activity and Cl(-) conductance, which eliminated the Cl(-) driving force by depolarizing membrane potential (∼8 mV) to GABA receptor reversal potential (∼-81 mV), and dampened excitatory potentials via shunting inhibition. In addition, both anoxia and GABA decreased excitatory postsynaptic activity, likely via GABA(B)R-mediated inhibition of presynaptic glutamate release. In combination, these mechanisms increased the stimulation required to elicit an action potential >20-fold, and excitatory activity decreased >70% despite membrane potential depolarization. In contrast, anoxic neurons cotreated with GABA(A+B)R antagonists underwent seizure-like events, deleterious Ca(2+) influx, and cell death, a phenotype consistent with excitotoxic cell death in anoxic mammalian brain. We conclude that increased endogenous GABA release during anoxia mediates SA by activating an inhibitory postsynaptic shunt and inhibiting presynaptic glutamate release. This represents a natural adaptive mechanism in which to explore strategies to protect mammalian brain from low-oxygen insults.


Assuntos
Hipóxia Encefálica/fisiopatologia , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Tartarugas/fisiologia , Potenciais de Ação , Adaptação Fisiológica , Animais , Fenômenos Eletrofisiológicos , Glutamina/fisiologia , Potenciais da Membrana , Neurônios/fisiologia , Transdução de Sinais , Ácido gama-Aminobutírico/fisiologia
10.
bioRxiv ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39211226

RESUMO

Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.

11.
J Neurosci ; 32(7): 2499-512, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396423

RESUMO

How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/ high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a "preictal phase," which abruptly turns into a higher frequency "ictal" phase. Blockade of GABA(A) receptors shortened the preictal phase, abolished interictal bursts, and attenuated the slow preictal depolarization, with no effect on the ictal duration, whereas SLEs were blocked by glutamate receptor blockade. In CA3 pyramidal cells and stratum oriens non-fast-spiking and fast-spiking interneurons, recurrent GABAergic IPSCs predominated interictally and during the early preictal phase, synchronous with extracellularly measured recurrent field potentials (FPs). These IPSCs then decreased to zero or reversed polarity by the onset of the higher-frequency ictus. However, postsynaptic muscimol-evoked GABA(A) responses remained intact. Simultaneously, EPSCs synchronous with the FPs markedly increased to a maximum at the ictal onset. The reversal potential of the compound postsynaptic currents (combined simultaneous EPSCs and IPSCs) became markedly depolarized during the preictal phase, whereas the muscimol-evoked GABA(A) reversal potential remained unchanged. During the late preictal phase, interneuronal excitability was high, but IPSCs, evoked by local stimulation, or osmotically by hypertonic sucrose application, were diminished, disappearing at the ictal onset. We conclude that the interictal and early preictal states are dominated by GABAergic activity, with the onset of the ictus heralded by exhaustion of presynaptic release of GABA, and unopposed increased glutamatergic responses.


Assuntos
Região CA3 Hipocampal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/deficiência
12.
J Neurophysiol ; 109(2): 363-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23076106

RESUMO

Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.


Assuntos
Estimulação Encefálica Profunda , Hipocinesia/terapia , Doença de Parkinson Secundária/terapia , Substância Negra/fisiopatologia , Animais , Antipsicóticos/uso terapêutico , Ritmo beta , Membro Anterior/inervação , Membro Anterior/fisiopatologia , Masculino , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reserpina/uso terapêutico , Tálamo/fisiopatologia
13.
Eur J Neurosci ; 37(2): 231-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121286

RESUMO

The mechanism of high-frequency stimulation used in deep brain stimulation (DBS) for Parkinson's disease (PD) has not been completely elucidated. Previously, high-frequency stimulation of the rat entopeduncular nucleus, a basal ganglia output nucleus, elicited an increase in [K(+)](e) to 18 mm, in vitro. In this study, we assessed whether elevated K(+) can elicit DBS-like therapeutic effects in hemiparkinsonian rats by employing the limb-use asymmetry test and the self-adjusting stepping test. We then identified how these effects were meditated with in-vivo and in-vitro electrophysiology. Forelimb akinesia improved in hemiparkinsonian rats undergoing both tests after 20 mm KCl injection into the substantia nigra pars reticulata (SNr) or the subthalamic nucleus. In the SNr, neuronal spiking activity decreased from 38.2 ± 1.2 to 14.6 ± 1.6 Hz and attenuated SNr beta-frequency (12-30 Hz) oscillations after K(+) treatment. These oscillations are commonly associated with akinesia/bradykinesia in patients with PD and animal models of PD. Pressure ejection of 20 mm KCl onto SNr neurons in vitro caused a depolarisation block and sustained quiescence of SNr activity. In conclusion, our data showed that elevated K(+) injection into the hemiparkinsonian rat SNr improved forelimb akinesia, which coincided with a decrease in SNr neuronal spiking activity and desynchronised activity in SNr beta frequency, and subsequently an overall increase in ventral medial thalamic neuronal activity. Moreover, these findings also suggest that elevated K(+) may provide an ionic mechanism that can contribute to the therapeutic effects of DBS for the motor treatment of advanced PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson Secundária/terapia , Potássio/farmacologia , Animais , Ritmo beta/efeitos dos fármacos , Membro Anterior , Hipocinesia/tratamento farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Potássio/uso terapêutico , Cloreto de Potássio/uso terapêutico , Ratos , Ratos Sprague-Dawley , Substância Negra/fisiopatologia , Núcleo Subtalâmico/fisiopatologia
14.
Neuroscience ; 521: 1-19, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116741

RESUMO

Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Ratos , Masculino , Animais , Dopamina , Receptores Dopaminérgicos , Cerebelo/metabolismo , Oxidopamina , Modelos Animais de Doenças
15.
Neurosci Lett ; 789: 136882, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152743

RESUMO

BACKGROUND: Non-invasive, external low intensity focused ultrasound (liFUS) offers promise for treating neuropathic pain when applied to the dorsal root ganglion (DRG). OBJECTIVE: We examine how external liFUS treatment applied to the L5 DRG affects neuronal changes in single-unit activity from the primary somatosensory cortex (SI) and anterior cingulate cortex (ACC) in a common peroneal nerve injury (CPNI) rodent model. METHODS: Male Sprague Dawley rats were divided into two cohorts: CPNI liFUS and CPNI sham liFUS. Baseline single-unit activity (SUA) recordings were taken 20 min prior to treatment and for 4 h post treatment in 20 min intervals, then analyzed for frequency and compared to baseline. Recordings from the SI and ACC were separated into pyramidal and interneurons based on waveform and principal component analysis. RESULTS: Following CPNI surgery, all rats (n = 30) displayed a significant increase in mechanical sensitivity. In CPNI liFUS rats, there was a significant increase in pyramidal neuron spike frequency in the SI region compared to the CPNI sham liFUS animals beginning at 120 min following liFUS treatment (p < 0.05). In the ACC, liFUS significantly attenuated interneuron firing beginning at 80 min after liFUS treatment (p < 0.05). CONCLUSION: We demonstrate that liFUS changed neuronal spiking in the SI and ACC regions 80 and 120 min after treatment, respectively, which may in part correlate with improved sensory thresholds. This may represent a mechanism of action how liFUS attenuates neuropathic pain. Understanding the impact of liFUS on pain circuits will help advance the use of liFUS as a non-invasive neuromodulation option.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Masculino , Ratos , Giro do Cíngulo , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/terapia , Nervo Fibular , Ratos Sprague-Dawley
16.
Epilepsia ; 52(11): 2084-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21906050

RESUMO

PURPOSE: We investigated whether RS-isovaline, a unique amino acid found in carbonaceous meteorites and presumed extraterrestrial, has anticonvulsant properties in rat hippocampal slices in vitro. METHODS: Extracellular recordings were obtained in the rat hippocampal CA1 pyramidal layer in two in vitro seizure models: perfusion of low (0.25 mm) Mg(2+) and high (5 mm) K(+) (LM/HK), or 100 µm 4-aminopyridine (4-AP). To investigate the underlying mechanisms of isovaline action, whole-cell recordings were obtained from CA1 pyramidal neurons and stratum oriens interneurons during 4-AP blockade of K(+) channels. KEY FINDINGS: Perfusion of LM/HK produced seizure-like events (SLEs) or stimulus-evoked primary afterdischarges (PADs) with amplitudes of 0.9 ± 0.1 mV lasting 80 ± 14 s. Application of isovaline (250 µm) for 20-30 min abolished SLEs and PADs or attenuated seizure amplitude and duration by 57.0 ± 9.0% and 57.0 ± 12.0%, respectively. Similar effects were seen with isovaline in the 4-AP seizure model. Isovaline alone increased interneuronal spontaneous spiking from 0.9 ± 0.3 to 3.2 ± 0.9 Hz, increased input resistance by 21.6 ± 8.1%, and depolarized the resting membrane potential by 8.0 ± 1.5 mV; no changes in the firing or electrical properties of pyramidal neurons were observed. Coapplication of 4-AP and isovaline increased interneuronal spontaneous spiking from 1.0 ± 0.6 to 2.6 ± 0.8 Hz, whereas pyramidal neuronal spiking activity decreased from 0.6 ± 0.4 to 0.2 ± 0.1 Hz. SIGNIFICANCE: Isovaline exhibited anticonvulsant properties in two hippocampal seizure models. This may lead to the development of a new class of anticonvulsants based on an unusual mechanism of action of this presumed extraterrestrial amino acid.


Assuntos
Anticonvulsivantes/uso terapêutico , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Convulsões/tratamento farmacológico , Valina/uso terapêutico , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Convulsivantes/farmacologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Interneurônios/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
17.
Neuroreport ; 32(1): 61-65, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33196548

RESUMO

Infantile spasms, also known as epileptic spasms during infancy, is an epileptic disorder of infancy and early childhood that is associated with developmental delay or regression, high mortality rate and is difficult to treat with conventional antiseizure medication. Previously, we reported that a unique amino acid called isovaline had potent anticonvulsive efficacy in the 4-aminopyridine and pilocarpine rat models of seizures. In this study, we examined whether isovaline possess therapeutic utility in a well-established rat model of infantile spasms which involves the pretreatment of a pregnant dam with betamethasone and subsequent induction of spasms with N-methyl-D-asparate (NMDA), a glutamate receptor agonist, in 15-day old pups. We treated seven of these pups with saline prior to administering NMDA and eight of these pups with isovaline (300 mg/kg) intraperitoneal (i.p.) prior to NMDA. Isovaline significantly reduced the number of full-body jumps from 18.1 ± 5.0 to 6.3 ± 1.8 and leg/arm/tail strains from 4.4 ± 1.6 to 1.1 ± 0.5. A trend in a reduction of body twitch was noted in rat pups administered isovaline (P = 0.05), but no significant difference was seen in NMDA-induced head nods (P = 0.221). In conclusion, our data demonstrate a potential for isovaline to attenuate an aggressive form of epilepsy that typically requires highly toxic medications to treat in children.


Assuntos
Espasmos Infantis , Valina/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Recém-Nascido , Ratos , Ratos Sprague-Dawley
18.
Neuroscience ; 460: 88-106, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631218

RESUMO

Deep brain stimulation (DBS) in Parkinson's disease (PD) alters neuronal function and network communication to improve motor symptoms. The subthalamic nucleus (STN) is the most common DBS target for PD, but some patients experience adverse effects on memory and cognition. Previously, we reported that DBS of the ventral anterior (VA) and ventrolateral (VL) nuclei of the thalamus and at the interface between the two (VA|VL), collectively VA-VL, relieved forelimb akinesia in the hemiparkinsonian 6-hydroxydopamine (6-OHDA) rat model. To determine the mechanism(s) underlying VA-VL DBS efficacy, we examined how motor cortical neurons respond to VA-VL DBS using single-unit recording electrodes in anesthetized 6-OHDA lesioned rats. VA-VL DBS increased spike frequencies of primary (M1) and secondary (M2) motor cortical pyramidal cells and M2, but not M1, interneurons. To explore the translational merits of VA-VL DBS, we compared the therapeutic window, rate of stimulation-induced dyskinesia onset, and effects on memory between VA-VL and STN DBS. VA-VL and STN DBS had comparable therapeutic windows, induced dyskinesia at similar rates in hemiparkinsonian rats, and adversely affected performance in the novel object recognition (NOR) test in cognitively normal and mildly impaired sham animals. Interestingly, a subset of sham rats with VA-VL implants showed severe cognitive deficits with DBS off. VA-VL DBS improved NOR test performance in these animals. We conclude that VA-VL DBS may exert its therapeutic effects by increasing pyramidal cell activity in the motor cortex and interneuron activity in the M2, with plausible potential to improve memory in PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Animais , Humanos , Oxidopamina/toxicidade , Doença de Parkinson/terapia , Ratos , Tálamo
19.
Neuroscience ; 429: 264-272, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001366

RESUMO

Non-invasive treatment methods for neuropathic pain are lacking. We assess how modulatory low intensity focused ultrasound (liFUS) at the L5 dorsal root ganglion (DRG) affects behavioral responses and sensory nerve action potentials (SNAPs) in a common peroneal nerve injury (CPNI) model. Rats were assessed for mechanical and thermal responses using Von Frey filaments (VFF) and the hot plate test (HPT) following CPNI surgery. Testing was repeated 24 h after liFUS treatment. Significant increases in mechanical and thermal sensory thresholds were seen post-liFUS treatment, indicating a reduction in sensitivity to pain (p < 0.0001, p = 0.02, respectively). Animals who received CPNI surgery had significant increases in SNAP latencies compared to sham CPNI surgery animals (p = 0.0003) before liFUS treatment. LiFUS induced significant reductions in SNAP latency in both CPNI liFUS and sham CPNI liFUS cohorts, for up to 35 min post treatment. No changes were seen in SNAP amplitude and there was no evidence of neuronal degeneration 24 h after liFUS treatment, showing that liFUS did not damage the tissue being modulated. This is the first in vivo study of the impact of liFUS on peripheral nerve electrophysiology in a model of chronic pain. This study demonstrates the effects of liFUS on peripheral nerve electrophysiology in vivo. We found that external liFUS treatment results in transient decreased latency in common peroneal nerve (CPN) sensory nerve action potentials (SNAPs) with no change in signal amplitude.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Fibular , Animais , Gânglios Espinais , Hiperalgesia , Ratos , Ratos Sprague-Dawley , Roedores
20.
Neurosci Lett ; 739: 135443, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33141067

RESUMO

Parkinson's Disease (PD) patients undergoing subthalamic nucleus deep brain stimulation (STN-DBS) therapy can reduce levodopa equivalent daily dose (LEDD) by approximately 50 %, leading to less symptoms of dyskinesia. The underlying mechanisms contributing to this reduction remain unclear, but studies posit that STN-DBS may increase striatal dopamine levels by exciting remaining dopaminergic cells in the substantia nigra pars compacta (SNc). Yet, no direct evidence has shown how SNc neuronal activity responds during STN-DBS in PD. Here, we use a hemiparkinsonian rat model of PD and employ in vivo electrophysiology to examine the effects of STN-DBS on SNc neuronal spiking activity. We found that 43 % of SNc neurons in naïve rats reduced their spiking frequency to 29.8 ± 18.5 % of baseline (p = 0.010). In hemiparkinsonian rats, a higher number of SNc neurons (88 % of recorded cells) decreased spiking frequency to 61.6 ± 4.4 % of baseline (p = 0.030). We also noted that 43 % of SNc neurons in naïve rats increased spiking frequency from 0.2 ± 0.0 Hz at baseline to 1.8 ± 0.3 Hz during stimulation, but only 1 SNc neuron from 1 hemiparkinsonian rat increased its spiking frequency by 12 % during STN-DBS. Overall, STN-DBS decreased spike frequency in the majority of recorded SNc neurons in a rat model of PD. Less homogenous responsiveness in directionality in SNc neurons during STN-DBS was seen in naive rats. Plausibly, poly-synaptic network signaling from STN-DBS may underlie these changes in SNc spike frequencies.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Parte Compacta da Substância Negra/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Masculino , Doença de Parkinson/fisiopatologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa