Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982837

RESUMO

Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, phosphorylated-tau (p-tau), and the expression of inflammatory proteins in lipopolysaccharide- or amyloid-ß-treated cells. AK extract exhibited inhibitory activity of control specific binding on N-methyl-D-aspartate (NMDA) receptors. Scopolamine-induced AD models were used chronically in rats and acutely in mice. Relative to negative controls (NC), hippocampal choline acetyltransferase (ChAT) and B-cell lymphoma 2 (Bcl2) activity was increased in rats chronically treated with scopolamine and fed an AK extract-containing diet. In the Y-maze test, spontaneous alterations were increased in the AK extract-fed groups compared to NC. Rats administered AK extract showed increased escape latency in the passive avoidance test. In the hippocampus of rats fed a high-AK extract diet (AKH), the expression of neuroactive ligand-receptor interaction-related genes, including Npy2r, Htr2c, and Rxfp1, was significantly altered. In the Morris water maze assay of mice acutely treated with scopolamine, the swimming times in the target quadrant of AK extract-treated groups increased significantly to the levels of the Donepezil and normal groups. We used Tg6799 Aß-overexpressing 5XFAD transgenic mice to investigate Aß accumulation in animals. In the AD model using 5XFAD, the administration of AK extract decreased amyloid-ß (Aß) accumulation and increased the number of NeuN antibody-reactive cells in the subiculum relative to the control group. In conclusion, AK extract ameliorated memory dysfunction by modulating ChAT activity and Bcl2-related anti-apoptotic pathways, affecting the expression of neuroactive ligand-receptor interaction-related genes and inhibiting Aß accumulation. Therefore, AK extract could be a functional material improving cognition and memory.


Assuntos
Doença de Alzheimer , Memória , Camundongos , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Ligantes , Transtornos da Memória/metabolismo , Escopolamina/efeitos adversos , Hipocampo/metabolismo , Camundongos Transgênicos , Aprendizagem em Labirinto , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
2.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456197

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-ß (Aß) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aß accumulation and Aß-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aß-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aß accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aß1-42 (2 µM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aß and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.


Assuntos
Doença de Alzheimer/radioterapia , Irradiação Craniana/métodos , Animais , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Feminino , Humanos , Camundongos , NF-kappa B/metabolismo , Doses de Radiação , Radiação Ionizante
3.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630597

RESUMO

Alzheimer's disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (TREM2) may result in microglia phenotype switching from M1 to M2, which finally attenuated Aß deposition and memory loss in AD. Low-dose ionizing radiation (LDIR) is known to ameliorate Aß pathology and cognitive deficits in AD; however, the therapeutic mechanisms of LDIR against AD-related pathology have been little studied. First, we reconfirm that LDIR (two Gy per fraction for five times)-treated six-month 5XFAD mice exhibited (1) the reduction of Aß deposition, as reflected by thioflavins S staining, and (2) the improvement of cognitive deficits, as revealed by Morris water maze test, compared to sham-exposed 5XFAD mice. To elucidate the mechanisms of LDIR-induced inhibition of Aß accumulation and memory loss in AD, we examined whether LDIR regulates the microglial phenotype through the examination of levels of M1 and M2 cytokines in 5XFAD mice. In addition, we investigated the direct effects of LDIR on lipopolysaccharide (LPS)-induced production and secretion of M1/M2 cytokines in the BV-2 microglial cells. In the LPS- and LDIR-treated BV-2 cells, the M2 phenotypic marker CD206 was significantly increased, compared with LPS- and sham-treated BV-2 cells. Finally, the effect of LDIR on M2 polarization was confirmed by detection of increased expression of TREM2 in LPS-induced BV2 cells. These results suggest that LDIR directly induced phenotype switching from M1 to M2 in the brain with AD. Taken together, our results indicated that LDIR modulates LPS- and Aß-induced neuroinflammation by promoting M2 polarization via TREM2 expression, and has beneficial effects in the AD-related pathology such as Aß deposition and memory loss.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Microglia/efeitos da radiação , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Radiação Ionizante , Receptores Imunológicos/metabolismo
4.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486013

RESUMO

It has been reported that damage to the mitochondria affects the progression of Alzheimer's disease (AD), and that mitochondrial dysfunction is improved by omega-3. However, no animal or cell model studies have confirmed whether omega-3 inhibits AD pathology related to mitochondria deficits. In this study, we aimed to (1) identify mitigating effects of endogenous omega-3 on mitochondrial deficits and AD pathology induced by amyloid beta (Aß) in fat-1 mice, a transgenic omega-3 polyunsaturated fatty acids (PUFAs)-producing animal; (2) identify if docosahexaenoic acid (DHA) improves mitochondrial deficits induced by Aß in HT22 cells; and (3) verify improvement effects of DHA administration on mitochondrial deficits and AD pathology in B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax (5XFAD), a transgenic Aß-overexpressing model. We found that omega-3 PUFAs significantly improved Aß-induced mitochondrial pathology in fat-1 mice. In addition, our in vitro and in vivo findings demonstrate that DHA attenuated AD-associated pathologies, such as mitochondrial impairment, Aß accumulation, neuroinflammation, neuronal loss, and impairment of adult hippocampal neurogenesis.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Mitocôndrias/patologia , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Feminino , Genótipo , Hipocampo/metabolismo , Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurogênese , Neurônios/metabolismo
5.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426329

RESUMO

It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer's disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level. In this study, we adopted AD animal model, five familial AD mutations (5XFAD) mice, and anterograde and retrograde tracers, BDA and DiI, respectively, to visualize the pathology-related changes in topographical connectivity of the SHS loop in the 5XFAD brain. By comparing 4.5-month-old and 14-month-old 5XFAD mice, we successfully identified key circuit components of the SHS loop altered in 5XFAD brains. Remarkably, the SHS loop began to degenerate in 4.5-month-old 5XFAD mice before the onset of neuronal loss. The impairment of connectivity between the MS and hippocampus was accelerated in 14-month-old 5XFAD mice. These results demonstrate, for the first time, topographical evidence for the degradation of the interconnection between the MS and hippocampus at the mesoscale level in a mouse model of AD. Our results provide structural and functional insights into the interconnectivity of the MS and hippocampus, which will inform the use and development of various therapeutic approaches that target neural circuits for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Septo do Cérebro/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Mutação , Vias Neurais/metabolismo , Vias Neurais/patologia , Presenilina-1/genética , Septo do Cérebro/metabolismo
6.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234321

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aß) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aß-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aß-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aß accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aß-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aß deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/efeitos dos fármacos , Panax , Preparações de Plantas/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Panax/química , Preparações de Plantas/química
7.
Int J Mol Sci ; 19(6)2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29912176

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aß) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an endogenous ligand for the growth hormone secretagogue-receptor type 1a (GHS-R1a). MK-0677 is a ghrelin agonist that potently stimulates the GHS-R1a ghrelin receptor. Interestingly, previous studies have shown that ghrelin improves cognitive impairments and attenuates neuronal death and neuroinflammation in several neurological disorders. However, it is unknown whether MK-0677 can affect Aß accumulation or Aß-mediated pathology in the brains of patients with AD. Therefore, we examined the effects of MK-0677 administration on AD-related pathology in 5XFAD mice, an Aß-overexpressing transgenic mouse model of AD. MK-0677 was intraperitoneally administered to three-month-old 5XFAD mice. To visualize Aß accumulation, neuroinflammation, and neurodegeneration, thioflavin-S staining and immunostaining with antibodies against Aß (4G8), ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), neuronal nuclear antigen (NeuN), and synaptophysin were conducted in the neocortex of 5XFAD and wild-type mice, and to evaluate changes of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) levels, immunostaining with antibody against pCREB was performed in dentate gyrus of the hippocampus of 5XFAD and wild-type mice. The histological analyses indicated that MK-0677-treated 5XFAD mice showed reduced Aß deposition, gliosis, and neuronal and synaptic loss in the deep cortical layers, and inhibited the decrement of pCREB levels in dentate gyrus of the hippocampus compared to vehicle-treated 5XFAD mice. Our results showed that activation of the ghrelin receptor with MK-0677 inhibited the Aß burden, neuroinflammation, and neurodegeneration, which suggested that MK-0677 might have potential as a treatment of the early phase of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Grelina/agonistas , Indóis/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Compostos de Espiro/uso terapêutico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Grelina/metabolismo , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Fármacos Neuroprotetores/farmacologia , Compostos de Espiro/farmacologia
8.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551564

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-ß (Aß) peptides in the brain is considered to be the major pathology of AD, inhibition of Aß aggregation could be an effective strategy for AD treatment. Jowiseungchungtang (JWS) is a traditional oriental herbal formulation that has been shown to improve cognitive function in patients or animal models with dementia. However, there are no reports examining the effects of JWS on Aß aggregation. Thus, we investigated whether JWS could protect against both Aß aggregates and Aß-mediated pathology such as neuroinflammation, neurodegeneration, and impaired adult neurogenesis in 5 five familial Alzheimer's disease mutations (5XFAD) mice, an animal model for AD. In an in vitro thioflavin T assay, JWS showed a remarkable anti-Aß aggregation effect. Histochemical analysis indicated that JWS had inhibitory effects on Aß aggregation, Aß-induced pathologies, and improved adult hippocampal neurogenesis in vivo. Taken together, these results suggest the therapeutic possibility of JWS for AD targeting Aß aggregation, Aß-mediated neurodegeneration, and impaired adult hippocampal neurogenesis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Agregados Proteicos/efeitos dos fármacos , Administração Oral , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Mutação , Neurogênese
9.
Am J Dermatopathol ; 37(7): 570-3, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25140663

RESUMO

We report the case of a 46-year-old Korean woman who presented with a 5-month history of a hyperkeratotic plaque on the left palm. On examination, the plaque showed an annular pattern with an umbilicated central nodule and a peripheral palisading induration, which had a verrucous surface. After surgical resection, histopathologic analysis revealed that the tumor was composed of haphazardly arranged spindle cells and displayed a predominantly myxoid appearance in the stroma. The tumor cells were positive for CD34 and bcl-2, but negative for smooth muscle actin and S-100. The clinical manifestation and histopathologic findings were most consistent with a diagnosis of solitary fibrous tumor with myxoid stromal change. There was no evidence of recurrence or metastasis during the 8-month follow-up period. This case highlights the importance of an accurate diagnosis of solitary fibrous tumors, which may have extensive myxoid stromal change, hence mimicking other myxoid-type spindle cell tumors.


Assuntos
Mãos , Neoplasias Cutâneas/patologia , Tumores Fibrosos Solitários/patologia , Células Estromais/patologia , Feminino , Humanos , Pessoa de Meia-Idade
10.
Dermatol Surg ; 40(6): 652-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24852469

RESUMO

BACKGROUND: Cross-linked dextran shows complete degradation in the vital tissue and has characteristics of neocollagenesis. However, its efficacy as a dermal filler in treating facial soft tissue defects has not been investigated. OBJECTIVE: To evaluate the efficacy and safety of subcutaneous injection of a dextran filler in treating nasolabial folds for 24 weeks. METHODS AND MATERIALS: Twenty patients were enrolled in this 24-week multicenter, evaluator-blinded clinical study. Each patient received a single session of a dextran filler treatment in both nasolabial folds, and no touch-up injections were given. Treatment efficacy was evaluated by blinded investigators at 4, 12, and 24 weeks after baseline. Safety data were collected from patient diaries and interviews at each follow-up visit. RESULTS: There were significant improvements (p<.0001) in the Wrinkle Severity Rating Scale scores compared with those at baseline with a mean decrease of 1.50±0.51 at 24 weeks. Only 1 mild treatment-related adverse event was noted throughout the 24-week follow-up period. CONCLUSION: Cross-linked dextran-derived injectable filler is considered to be a favorable measure in tissue augmentation of the nasolabial folds. Further investigation is needed to demonstrate the long-term efficacy and safety of dextran fillers.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Técnicas Cosméticas , Dextranos/administração & dosagem , Sulco Nasogeniano , Envelhecimento da Pele/efeitos dos fármacos , Idoso , Povo Asiático , Materiais Biocompatíveis/efeitos adversos , Técnicas Cosméticas/efeitos adversos , Dextranos/efeitos adversos , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Injeções Intradérmicas , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , República da Coreia , Fatores de Tempo , Resultado do Tratamento
11.
Biomed Pharmacother ; 177: 117090, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968796

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aß deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aß deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aß-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aß deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aß-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aß-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aß, and inhibits neuroinflammation and Aß deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.

12.
Aging Cell ; : e14231, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952076

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aß accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.

13.
Curr Med Chem ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38486385

RESUMO

BACKGROUND: Traditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, Palmijihwanghwan, and Jowiseungchungtang have been commonly used to treat patients with Alzheimer's disease. However, only a few studies have investigated the effects of these five TOMs on tau pathology. OBJECTIVE: This study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation. METHODS: Immunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively. RESULTS: The five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. Hwanglyeonhaedoktang inhibited the aggregation of tau and promoted the dissociation of tau aggregates. Dangguijakyaksan and Hwanglyeonhaedoktang attenuated tau-induced neurotoxicity in HT22 cells. In addition, Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, and Palmijihwanghwan reduced tauinduced pro-inflammatory cytokine levels in BV2 cells. CONCLUSION: Our results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, Hwanglyeonhaedoktang showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that Hwanglyeonhaedoktang is suitable for treating AD patients with tau pathology.

14.
Biomed Pharmacother ; 172: 116226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301421

RESUMO

Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-ß (Aß) and tau. Aß and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aß and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aß or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aß and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aß and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aß42 and tau K18. We verified the effect of neferine on Aß fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aß42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aß and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aß and tau pathology.


Assuntos
Doença de Alzheimer , Benzilisoquinolinas , Síndromes Neurotóxicas , Humanos , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Dispositivos Lab-On-A-Chip , Tecnologia
15.
Int J Biol Macromol ; 263(Pt 2): 130516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423419

RESUMO

Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aß) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aß deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.


Assuntos
Doença de Alzheimer , Panax , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Panax/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
16.
BMB Rep ; 56(9): 520-525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482752

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aß. Although Aß-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aß-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aß accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aß accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aß deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression. [BMB Reports 2023; 56(9): 520-525].


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Doenças Neurodegenerativas , Camundongos , Masculino , Animais , Doença de Alzheimer/patologia , Neurogênese , Células-Tronco Neurais/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides
17.
J Ginseng Res ; 47(2): 302-310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926613

RESUMO

Background: The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aß) plaques. The impairments of axons and synapses appear in the process of Aß plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (NFP) from Korean Red Ginseng (KRG) showed neuroprotective effects in AD. However, precise molecular mechanism of the therapeutic effects of NFP from KRG in AD still remains elusive. Methods: To investigate the therapeutic mechanisms of NFP from KRG on AD, we conducted proteomic analysis for frontal cortex from vehicle-treated wild-type, vehicle-treated 5XFAD mice, and NFP-treated 5XFAD mice by using nano-LC-ESI-MS/MS. Metabolic network analysis was additionally performed as the effects of NFP appeared to be associated with metabolism according to the proteome analysis. Results: Starting from 5,470 proteins, 2,636 proteins were selected for hierarchical clustering analysis, and finally 111 proteins were further selected for protein-protein interaction network analysis. A series of these analyses revealed that proteins associated with synapse and mitochondria might be linked to the therapeutic mechanism of NFP. Subsequent metabolic network analysis via genome-scale metabolic models that represent the three mouse groups showed that there were significant changes in metabolic fluxes of mitochondrial carnitine shuttle pathway and mitochondrial beta-oxidation of polyunsaturated fatty acids. Conclusion: Our results suggested that the therapeutic effects of NFP on AD were associated with synaptic- and mitochondrial-related pathways, and they provided targets for further rigorous studies on precise understanding of the molecular mechanism of NFP.

18.
Biomed Pharmacother ; 168: 115770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865990

RESUMO

Alzheimer's disease (AD) is characterized by the aggregation of disordered proteins, such as amyloid beta (Aß) and tau, leading to neurotoxicity and disease progression. Despite numerous efforts, effective inhibitors of Aß and tau aggregates have not been developed. Thus, we aimed to screen natural small molecules from crude extracts that target various pathologies and are prescribed for patients with neurological diseases. In this study, we screened 162 natural small molecules prescribed for neurological diseases and identified genipin and pyrogallol as hit compounds capable of simultaneously regulating the aggregation of Aß and tau K18. Moreover, we confirmed the dual modulatory effects of these compounds on the reduction of amyloid-mediated neurotoxicity in vitro and the disassembly of preformed Aß42 and tau K18 fibrils. Furthermore, we observed the alleviatory effects of genipin and pyrogallol against AD-related pathologies in triple transgenic AD mice. Molecular dynamics and docking simulations revealed the molecular interaction dynamics of genipin and pyrogallol with Aß42 and tau K18, providing insights into their suppression of aggregation. Our findings suggest the therapeutic potential of genipin and pyrogallol as dual modulators for the treatment of AD by inhibiting aggregation or promoting dissociation of Aß and tau.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Pirogalol/farmacologia , Proteínas tau/metabolismo , Camundongos Transgênicos
19.
Biomed Pharmacother ; 156: 113865, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242849

RESUMO

A prominent characteristic of Alzheimer's disease (AD) is the deposition of both amyloid-ß (Aß) peptide and tau protein in the brain. Aß and tau not only induce toxicity through self-aggregation but also induce more potent toxicity through the synergistic action of Aß and tau. In particular, neurotoxic aggregates of Aß and tau directly affect several AD pathologies including neuroinflammation and cognitive decline. Therefore, there is increasing interest in strategies to modulate the aggregation and dissociation of Aß and tau for treatment of AD. Our recent study found that Uncaria rhynchophylla (UR) has a therapeutic effect on AD via the inhibition of Aß aggregation and attenuating Aß-mediated pathogenesis of AD. However, no studies have investigated whether UR has anti- and disaggregation effects on both Aß and tau. In this study, we showed the significant effects of UR on aggregation and dissociation of Aß42 and tau K18 using a thioflavin T (ThT) assay. In addition, histological study revealed an inhibitory effect of UR on the accumulation of Aß and tau and AD-related pathologies in 3xTg mice with both Aß and tau pathology. Furthermore, we found that rhynchophylline and corynoxeine, bioactive components of UR, could modulate the aggregation and dissociation of both Aß and tau using molecular docking simulation, isothermal titration calorimetry, and ThT assays. In conclusion, our results demonstrate that UR can inhibit the aggregation of Aß and tau and promote the degradation of their aggregates in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Simulação de Acoplamento Molecular , Camundongos Transgênicos , Doença de Alzheimer/metabolismo
20.
Transl Neurodegener ; 10(1): 49, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876226

RESUMO

Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-ß (Aß) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aß homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa