Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 390(1): 99-107, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670801

RESUMO

Dotinurad was developed as a uricosuric agent, inhibiting urate (UA) reabsorption through the UA transporter URAT1 in the kidneys. Due to its high selectivity for URAT1 among renal UA transporters, we investigated the mechanism underlying this selectivity by identifying dotinurad binding sites specific to URAT1. Dotinurad was docked to URAT1 using AutoDock4, utilizing the AlphaFold2-predicted structure. The inhibitory effects of dotinurad on wild-type and mutated URAT1 at the predicted binding sites were assessed through URAT1-mediated [14C]UA uptake in Xenopus oocytes. Nine amino acid residues in URAT1 were identified as dotinurad-binding sites. Sequence alignment with UA-transporting organic anion transporters (OATs) revealed that H142 and R487 were unique to URAT1 among renal UA-transporting OATs. For H142, IC50 values of dotinurad increased to 62, 55, and 76 nM for mutated URAT1 (H142A, H142E, and H142R, respectively) compared with 19 nM for the wild type, indicating that H142 contributes to URAT1-selective interaction with dotinurad. H142 was predicted to interact with the phenyl-hydroxyl group of dotinurad. The IC50 of the hydroxyl group methylated dotinurad (F13141) was 165 µM, 8420-fold higher than dotinurad, suggesting the interaction of H142 and the phenyl-hydroxyl group by forming a hydrogen bond. Regarding R487, URAT1-R487A exhibited a loss of activity. Interestingly, the URAT1-H142A/R487A double mutant restored UA transport activity, with the IC50 value of dotinurad for the mutant (388 nM) significantly higher than that for H142A (73.5 nM). These results demonstrate that H142 and R487 of URAT1 determine its selectivity for dotinurad, a uniqueness observed only in URAT1 among UA-transporting OATs. SIGNIFICANCE STATEMENT: Dotinurad selectively inhibits the urate reabsorption transporter URAT1 in renal urate-transporting organic ion transporters (OATs). This study demonstrates that dotinurad interacts with H142 and R487 of URAT1, located in the extracellular domain and unique among OATs when aligning amino acid sequences. Mutations in these residues reduce affinity of dotinurad for URAT1, confirming their role in conferring selective inhibition. Additionally, the interaction between dotinurad and URAT1 involving H142 is found to mediate hydrogen bonding.


Assuntos
Transportadores de Ânions Orgânicos , Ácido Úrico , Uricosúricos , Animais , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Sítios de Ligação , Humanos , Uricosúricos/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Xenopus laevis , Rim/metabolismo , Rim/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Benzotiazóis/farmacologia , Simulação de Acoplamento Molecular
2.
Biol Pharm Bull ; 47(1): 72-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171780

RESUMO

We recently reported that the gastrointestinal (GI) fluid volume is influenced by the solution osmolality, and proposed that this effect may play a role in beverage-drug interactions. Here, we investigated whether osmolality-dependent fluid secretion can explain the difference in the magnitudes of fruit juice-drug interactions depending on the type of fruit juice (grapefruit juice (GFJ), orange juice (OJ), and apple juice (AJ)). The osmolality of GFJ, OJ, and AJ used in this study was found to be 552, 686, and 749 mOsm/kg, respectively. Measurements of intestinal fluid movement following beverage administration by the in situ closed-loop technique revealed the following rank order for fluid volume in rat ileum: AJ > OJ > GFJ > purified water, suggesting that water movement is dependent on the osmolality of these beverages. Such changes in GI fluid volume are expected to alter the luminal drug concentration, potentially contributing to the magnitude of beverage-drug interactions. Indeed, in vivo pharmacokinetic study in rats revealed that the plasma concentration of atenolol, a low-permeability drug, was the highest after oral administration in purified water, followed by GFJ and OJ, and was the lowest after administration in AJ. In contrast, antipyrine, a high-permeability drug, showed no significant difference in plasma concentration after administration in purified water and fruit juices, suggesting that the absorption of high-permeability drugs is less affected by solution osmolality. Our findings indicate that differences in the magnitude of beverage-drug interactions can be at least partly explained by differences in the osmolality of the beverages ingested.


Assuntos
Citrus paradisi , Citrus sinensis , Malus , Ratos , Animais , Sucos de Frutas e Vegetais , Interações Alimento-Droga , Bebidas/análise , Concentração Osmolar , Água , Frutas
3.
Biopharm Drug Dispos ; 45(1): 3-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085672

RESUMO

The aim of this study was firstly to investigate the effect of membrane permeability on the intestinal availability (Fg ) of 10 cytochrome P450 3A4 substrates with differing permeability (Papp ) and metabolic activity (CLint ) using Madin-Darby canine kidney II (MDCKII) cells expressing human CYP3A4 (MDCKII/CYP3A4 cells), and secondly to confirm the essential factors by simulations. A membrane permeation assay using MDCKII/CYP3A4 cells showed a significant correlation between human intestinal extraction ratio (ER) (Eg (=1 - Fg )) and in vitro cellular ER (r = 0.834). This relationship afforded better predictability of Eg values than the relationship between Eg and CLint,HIM values obtained from human intestinal microsomes (r = 0.598). An even stronger correlation was observed between 1 - Fa ·Fg and ER (r = 0.874). Simulation with a cellular kinetic model indicated that ER is sensitive to changes of PSpassive and CLint values, but not to the intracellular unbound fraction (fu,cell ) or P-gp-mediated efflux (PSP - gp ). It may be concluded that, based on the concentration-time profile of drugs in epithelial cells, transmembrane permeability influences Fg (or ER) and drug exposure time to metabolizing enzymes for P450 substrate.


Assuntos
Citocromo P-450 CYP3A , Absorção Intestinal , Humanos , Animais , Cães , Citocromo P-450 CYP3A/metabolismo , Intestinos , Permeabilidade da Membrana Celular , Permeabilidade
4.
Mol Pharmacol ; 103(3): 166-175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804202

RESUMO

Mucin 1 (MUC1) is aberrantly expressed in various cancers and implicated in cancer progression and chemoresistance. Although the C-terminal cytoplasmic tail of MUC1 is involved in signal transduction, promoting chemoresistance, the role of the extracellular MUC1 domain [N-terminal glycosylated domain (NG)-MUC1] remains unclear. In this study, we generated stable MCF7 cell lines expressing MUC1 and cytoplasmic tail-deficient MUC1 (MUC1ΔCT) and show that NG-MUC1 is involved in drug resistance by modulating the transmembrane permeation of various compounds without cytoplasmic tail signaling. Heterologous expression of MUC1ΔCT increased cell survival in treating anticancer drugs (such as 5-fluorouracil, cisplatin, doxorubicin, and paclitaxel), in particular by causing an approximately 150-fold increase in the IC50 of paclitaxel, a lipophilic drug, compared with the control [5-fluorouracil (7-fold), cisplatin (3-fold), and doxorubicin (18-fold)]. The uptake studies revealed that accumulations of paclitaxel and Hoechst 33342, a membrane-permeable nuclear staining dye, were reduced to 51% and 45%, respectively, in cells expressing MUC1ΔCT via ABCB1/P-gp-independent mechanisms. Such alterations in chemoresistance and cellular accumulation were not observed in MUC13-expressing cells. Furthermore, we found that MUC1 and MUC1ΔCT increased the cell-adhered water volume by 2.6- and 2.7-fold, respectively, suggesting the presence of a water layer on the cell surface created by NG-MUC1. Taken together, these results suggest that NG-MUC1 acts as a hydrophilic barrier element against anticancer drugs and contributes to chemoresistance by limiting the membrane permeation of lipophilic drugs. Our findings could help better the understanding of the molecular basis of drug resistance in cancer chemotherapy. SIGNIFICANCE STATEMENT: Membrane-bound mucin (MUC1), aberrantly expressed in various cancers, is implicated in cancer progression and chemoresistance. Although the MUC1 cytoplasmic tail is involved in proliferation-promoting signal transduction thereby leading to chemoresistance, the significance of the extracellular domain remains unclear. This study clarifies the role of the glycosylated extracellular domain as a hydrophilic barrier element to limit the cellular uptake of lipophilic anticancer drugs. These findings could help better the understanding of the molecular basis of MUC1 and drug resistance in cancer chemotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Mucina-1/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Membrana Celular/metabolismo , Paclitaxel/farmacologia , Fluoruracila/farmacologia
5.
Drug Metab Dispos ; 51(11): 1527-1535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643882

RESUMO

Urate transporter 1 (URAT1) is a transporter responsible for uric acid (UA) reabsorption by renal proximal tubules and a pharmacological target of uricosuric agents. Probenecid and benzbromarone have been used as uricosuric agents, while dotinurad was recently approved in Japan. Notably, the in vitro IC 50 of dotinurad on URAT1 is not strong enough to explain its in vivo uricosuric effect estimated based on clinical unbound plasma concentrations, suggesting the presence of mechanisms other than competition with UA uptake at the extracellular domain of URAT1 (cis-inhibition). In this study, trans-inhibition was hypothesized as the mechanism underlying URAT1 inhibition by dotinurad, wherein intracellularly accumulated dotinurad inactivates URAT1. In URAT1-expressing Madin-Darby Canine Kidney-II cells and Xenopus oocytes, pre-incubation with dotinurad potentiated the inhibitory effect more than co-incubation alone, but this effect was not observed with benzbromarone or probenecid. Under co-incubation, dotinurad inhibited UA uptake in a competitive manner (cis-inhibition). When we pre-injected dotinurad directly into oocytes and immediately measured [14C]UA uptake without coincubation (only trans-inhibition), dotinurad noncompetitively inhibited UA uptake. URAT1 is an exchange transporter for UA and monocarboxylates such as nicotinic acid (NA). Pre-injected dotinurad and extracellular UA attenuated and facilitated efflux of [3H]NA, respectively, whereas pre-injection of benzbromarone or probenecid did not affect it, suggesting that dotinurad exhibits trans-inhibition by attenuating URAT1-mediated efflux of monocarboxylates, which is a driving force for UA uptake by URAT1. Accordingly, dotinurad ameliorates URAT1-mediated UA reabsorption by both cis- and trans-inhibition, explaining its clinically stronger uricosuric effect than that estimated by the in vitro IC50 value. SIGNIFICANCE STATEMENT: The uricosuric agent dotinurad inhibits uric acid reabsorptive transporter (URAT) 1 with a clinical potency stronger than that estimated from IC 50 obtained by in vitro URAT1 inhibition. This in vivo-in vitro discrepancy was explained by the trans-inhibition effect of dotinurad on URAT1. Trans-inhibition was due to the attenuation of monocarboxylates efflux via URAT1, which is a driving force for URAT1-mediated exchange transport of uric acid. Overall, this is the first study to experimentally demonstrate trans-inhibition mechanism of URAT1.

6.
Mol Pharm ; 20(1): 491-499, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458938

RESUMO

The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.


Assuntos
Neoplasias da Mama , Imunoconjugados , Maitansina , Humanos , Feminino , Trastuzumab/farmacologia , Maitansina/farmacologia , Maitansina/química , Fluorescência , Ado-Trastuzumab Emtansina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo
7.
Mol Pharm ; 20(12): 6130-6139, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971309

RESUMO

Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 µM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Cetolídeos , Maitansina , Humanos , Feminino , Ado-Trastuzumab Emtansina , Neoplasias da Mama/patologia , Cetolídeos/metabolismo , Cetolídeos/uso terapêutico , Imunoconjugados/uso terapêutico , Azitromicina , Claritromicina/farmacologia , Maitansina/farmacologia , Maitansina/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Trastuzumab/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Lisossomos/metabolismo , Antibacterianos/uso terapêutico
8.
Pharm Res ; 39(7): 1549-1559, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35314999

RESUMO

AIM: Identification of blood-brain barrier (BBB) uptake transporters is a major challenge in the research and development of central nervous system (CNS) drugs. However, conventional methods that consider known drug uptake characteristics have failed at identifying the responsible transporter molecule. The present study aimed at identifying aripiprazole uptake transporters in BBB model hCMEC/D3 cells using a knockdown screening study targeting various transporters, including uncharacterized ones. METHODS: We evaluated the effect of 214 types of siRNA targeting transporters on the uptake of aripiprazole, an atypical antipsychotic drug, in hCMEC/D3 cells. Aripiprazole uptake was determined using Xenopus oocytes expressing the candidate genes extracted from the siRNA screening assay. RESULTS: The estimated unbound brain to plasma concentration ratio (Kp,uu,brain) of aripiprazole was estimated as 0.67 in wild-type mice and 1.94 in abcb1a/1b/abcg2 knockout mice, suggesting the involvement of both uptake and efflux transporters in BBB permeation. According to siRNA knockdown screening studies, organic cation/carnitine transporter 2 (OCTN2) and long-chain fatty acid transporter 1 (FATP1) were identified as candidate genes. The uptake of aripiprazole by hCMEC/D3 cells was decreased by OCTN2 inhibitors, but not by FATP1 inhibitors. A partially increased uptake of aripiprazole was observed in OCTN2-expressing Xenopus oocytes. Finally, to evaluate transporter-mediated BBB permeation of drugs, the reported and estimated Kp,uu,brain values were summarized. CONCLUSIONS: A knockdown screening study in combination with Kp,uu,brain values showed that aripiprazole was a potential substrate of OCTN2. The technique described in this study can be applied to identifying novel BBB transporters for CNS drugs.


Assuntos
Barreira Hematoencefálica , Proteínas de Membrana Transportadoras , Animais , Aripiprazol/farmacologia , Transporte Biológico , Encéfalo , Camundongos , RNA Interferente Pequeno/genética
9.
Biol Pharm Bull ; 45(3): 316-322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228397

RESUMO

The type of method adopted for the evaluation of drug-induced kidney injury (DIKI) plays an important role during the drug discovery process. In the present study, the usefulness of cultured rat kidney tissue slices maintained on gas-permeable poly(dimethylsiloxane) (PDMS) plates for DIKI was assessed by monitoring the ATP content as a marker of cell viability. The amount of ATP in the kidney slices cultured on the PDMS plates was higher than that in the slices cultured on gas-impermeable polystyrene plates. The protein expression of organic cation transporter-2 (Oct2) was maintained for 3 d. Cisplatin showed a time- and concentration-dependent reduction in ATP in the slices with a half-effective concentration value of 24 µM, which was alleviated by cimetidine, an Oct2 inhibitor, suggesting that cisplatin-induced kidney injury in the cultured slices was regulated by the basolateral uptake transporter Oct2. Furthermore, the intensity of platinum anticancer drug-induced nephrotoxicity in the cultured slices was consistent with that of the in vivo study. In conclusion, the primary culture of rat kidney tissue slices on gas-permeable plates is expected to aid in the prediction of the extent of nephrotoxicity of drugs, even when transporters are responsible for the accumulation of drugs in kidney tissues.


Assuntos
Antineoplásicos , Platina , Animais , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Cisplatino/efeitos adversos , Rim , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Platina/metabolismo , Ratos
10.
Pharm Res ; 38(9): 1585-1592, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34435306

RESUMO

PURPOSE: This study aims to understand the effect of salvage enzyme activity on the saturable kinetics of facilitated cellular uptake of purine nucleobase by developing a cellular kinetic model incorporating equilibrative nucleobase transporter 1 (ENBT1) and adenine phosphoribosyltransferase (APRT), with adenine as a model nucleobase. METHODS: A cellular kinetic model incorporating the functions of ENBT1 and APRT was developed using Napp software and employed for model-based analysis of the cellular disposition of adenine. RESULTS: Simulation analysis using the developed cellular kinetic model could account for the experimentally observed time-dependent changes in the Km(app) value of adenine for ENBT1-mediated uptake. At a long experimental time, the model shows that uptake of adenine is rate-limited by APRT, enabling determination of the Km value for APRT. At early time, the rate-limiting step for adenine uptake is ENBT1-mediated transport, enabling determination of the Km value for ENBT1. Further simulations showed that the effect of experimental time on the Km(app) value for ENBT1-mediated uptake is dependent on the APRT expression level. CONCLUSION: Our findings indicate that both enzyme expression levels and experimental time should be considered when using cellular uptake studies to determine the Km values of purine nucleobases for facilitated transporters.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Purinas/metabolismo , Adenina/metabolismo , Animais , Linhagem Celular , Cães , Cinética , Células Madin Darby de Rim Canino
11.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770805

RESUMO

As advanced synthetic technology has enabled drug candidate development with complex structure, resulting in low solubility and membrane permeability, the strategies to improve poorly absorbed drug bioavailability have attracted the attention of pharmaceutical companies. It has been demonstrated that nitric oxide (NO), a vital signaling molecule that plays an important role in various physiological systems, affects intestinal drug absorption. However, NO and its oxidants are directly toxic to the gastrointestinal tract, thereby limiting their potential clinical application as absorption enhancers. In this study, we show that sodium nitroprusside (SNP), an FDA-approved vasodilator, enhances the intestinal absorption of lipophilic drugs in the proximal parts of the small intestine in rats. The SNP pretreatment of the rat gastrointestinal sacs significantly increased griseofulvin and flurbiprofen permeation in the duodenum and jejunum but not in the ileum and colon. These SNP-related enhancement effects were attenuated by the co-pretreatment with dithiothreitol or c-PTIO, an NO scavenger. The permeation-enhancing effects were not observed in the case of antipyrine, theophylline, and propranolol in the duodenum and jejunum. Furthermore, the SNP treatment significantly increased acidic glycoprotein release from the mucosal layers specifically in the duodenum and jejunum but not in the ileum and colon. These results suggest that SNP increases lipophilic drug membrane permeability specifically in the proximal region of the small intestine through disruption of the mucosal layer.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Nitroprussiato/farmacologia , Preparações Farmacêuticas/metabolismo , Animais , Óxido Nítrico/metabolismo , Nitroprussiato/química , Ratos
12.
Drug Metab Dispos ; 47(4): 386-391, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622163

RESUMO

A recent clinical study reported that the ingestion of apple juice (AJ) markedly reduced the plasma concentration of atenolol; however, our in vitro study showed that atenolol may not be a substrate of organic anion transporting polypeptide 2B1 (OATP2B1), so this AJ-atenolol interaction cannot be explained by inhibition of OATP2B1. On the other hand, we more recently showed that the solution osmolality influences gastrointestinal (GI) water volume, and this may indirectly affect intestinal drug absorption. In this study, we examined whether the osmolality dependence of water dynamics can account for AJ-atenolol interactions by evaluating the GI water volume and the atenolol aborption in the presence of AJ in rats. Water absorption was highest in purified water, followed by saline and isosmotic mannitol solution, and the lowest in AJ, confirming that water absorption is indeed osmolality-dependent. Interestingly, AJ showed apparent water secretion into the intestinal lumen. The intestinal concentration of FD-4, a nonpermeable compound, after administration in AJ was lower than the initial concentration, whereas that in purified water was greater than the initial concentration. Further, the fraction of atenolol absorbed in intestine was significantly lower in AJ or hyperosmotic mannitol solution (adjusted to the osmolality of AJ) than after administration in purified water. Comparable results were observed in an in vivo pharmacokinetic study in rats. Our results indicate that orally administered AJ has a capacity to modulate luminal water volume depending on the osmolality, and this effect may result in significant AJ-atenolol interactions.


Assuntos
Atenolol/farmacocinética , Interações Alimento-Droga/fisiologia , Malus/química , Animais , Sucos de Frutas e Vegetais , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Concentração Osmolar , Ratos , Ratos Wistar
13.
Pharm Res ; 36(11): 162, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31529336

RESUMO

PURPOSE: Mucins are the principal glycoproteins in mucus and have been implicated in the limitation of intestinal drug absorption; however, the contribution of these molecules to intestinal drug absorption remains unclear. In this study, the relationship between the effect of the mucus layer on intestinal drug permeation and mucin distribution in different parts of the rat gastrointestinal tract was evaluated. METHODS: The intestinal permeability of various lipophilic drugs in rat small intestine was evaluated using the in vitro sac method. The expression profiles of mucin mRNA and proteins were evaluated by quantitative real-time RT-PCR and western blotting, respectively. RESULTS: The intestinal permeability of griseofulvin and antipyrine was enhanced by dithiothreitol (DTT) treatment in the proximal small intestine, such as duodenum and jejunum, but not in the distal regions. The mRNA expression analysis of rat mucin genes revealed that the intestinal expression of Muc5ac was considerably higher in the duodenum, whereas that of Muc1, Muc2, and Muc3A was gradually increased toward the lower intestine. In addition, Muc5ac protein was detected only in the luminal fluids from the proximal small intestine after DTT treatment. CONCLUSIONS: Mucus limits the intestinal permeation of lipophilic drugs in the rat proximal small intestine, in which Muc5ac may be involved.


Assuntos
Antipirina/farmacologia , Griseofulvina/farmacologia , Intestino Delgado/metabolismo , Lipossomos , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Antipirina/metabolismo , Composição de Medicamentos , Griseofulvina/metabolismo , Absorção Intestinal , Mucinas/genética , Ratos
14.
Biochem Biophys Res Commun ; 495(3): 2152-2157, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29273507

RESUMO

Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 µM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 µM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.


Assuntos
Benzotiazóis/metabolismo , Aumento da Imagem/métodos , Luciferases/metabolismo , Medições Luminescentes/métodos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Genes Reporter/genética , Células HEK293 , Humanos , Luciferases/genética , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
J Pharmacol Exp Ther ; 361(2): 246-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28275201

RESUMO

All-trans retinoic acid (atRA) is a front-line treatment of acute promyelocytic leukemia (APL). Due to its activity in regulating the cell cycle, it has also been evaluated for the treatment of other cancers. However, the efficacy of atRA has been limited by atRA inducing its own metabolism during therapy, resulting in a decrease of atRA exposure during continuous dosing. Frequent relapse occurs in patients receiving atRA monotherapy. In an attempt to combat therapy resistance, inhibitors of atRA metabolism have been developed. Of these, ketoconazole and liarozole have shown some benefits, but their usage is limited by side effects and low potency toward the cytochrome P450 26A1 isoform (CYP26A1), the main atRA hydroxylase. We determined the pharmacokinetic basis of therapy resistance to atRA and tested whether the complex disposition kinetics of atRA could be predicted in healthy subjects and in cancer patients in the presence and absence of inhibitors of atRA metabolism using physiologically based pharmacokinetic (PBPK) modeling. A PBPK model of atRA disposition was developed and verified in healthy individuals and in cancer patients. The population-based PBPK model of atRA disposition incorporated saturable metabolic clearance of atRA, induction of CYP26A1 by atRA, and the absorption and distribution kinetics of atRA. It accurately predicted the changes in atRA exposure after continuous dosing and when coadministered with ketoconazole and liarozole. The developed model will be useful in interpretation of atRA disposition and efficacy, design of novel dosing strategies, and development of next-generation atRA metabolism inhibitors.


Assuntos
Neoplasias , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Biofarmácia/métodos , Desenho de Fármacos , Interações Medicamentosas , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Distribuição Tecidual , Tretinoína/metabolismo , Tretinoína/farmacocinética
16.
Drug Metab Dispos ; 43(12): 1872-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26374172

RESUMO

Atenolol is a ß-blocker widely used in the treatment of hypertension. Atenolol is cleared predominantly by the kidney by both glomerular filtration and active secretion, but the molecular mechanisms involved in its renal secretion are unclear. Using a panel of human embryonic kidney cell lines stably expressing human organic cation transporter (hOCT) 1-3, human organic anion transporter (hOAT) 1, hOAT3, human multidrug and toxin extrusion protein (hMATE) 1, and hMATE2-K, we found that atenolol interacted with both organic cation and anion transporters. However, it is transported by hOCT1, hOCT2, hMATE1, and hMATE2-K, but not by hOCT3, hOAT1, and hOAT3. A detailed kinetic analysis coupled with absolute quantification of membrane transporter proteins by liquid chromatography-tandem mass spectrometry revealed that atenolol is an excellent substrate for the renal transporters hOCT2, hMATE1, and hMATE2-K. The Km values for hOCT2, hMATE1, and hMATE2-K are 280 ± 4, 32 ± 5, and 76 ± 14 µM, respectively, and the calculated turnover numbers are 2.76, 0.41, and 2.20 s(-1), respectively. To demonstrate unidirectional transepithelial transport of atenolol, we developed and functionally validated a hOCT2/hMATE1 double-transfected Madin-Darby canine kidney cell culture model. Transwell studies showed that atenolol transport in the basal (B)-to-apical (A) direction is 27-fold higher than in the A-to-B direction, whereas its B-to-A/A-to-B transport ratio was only 2 in the vector-transfected control cells. The overall permeability of atenolol in the B-to-A direction in hOCT2/hMATE1 cells was 44-fold higher than in control cells. Together, our data support that atenolol tubular secretion is mediated through the hOCT2/hMATEs secretion pathway and suggest a significant role of organic cation transporters in the disposition of an important antihypertensive drug.


Assuntos
Atenolol/metabolismo , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Animais , Atenolol/farmacologia , Cães , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Células Madin Darby de Rim Canino , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores
17.
Drug Metab Dispos ; 43(8): 1226-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26021325

RESUMO

CYP2C19 rs12769205 alters an intron 2 branch point adenine leading to an alternative mRNA in human liver with complete inclusion of intron 2 (exon 2B). rs12769205 changes the mRNA reading frame, introduces 87 amino acids, and leads to a premature stop codon. The 1000 Genomes project (http://browser.1000genomes.org/index.html) indicated rs12769205 is in linkage disequilibrium with rs4244285 on CYP2C19*2, but found alone on CYP2C19*35 in Blacks. Minigenes containing rs12769205 transfected into HepG2 cells demonstrated this single nucleotide polymorphism (SNP) alone leads to exon 2B and decreases CYP2C19 canonical mRNA. A residual amount of CYP2C19 protein was detectable by quantitative proteomics with tandem mass spectrometry in CYP2C19*2/*2 and *1/*35 liver microsomes with an exon 2 probe. However, an exon 4 probe, downstream from rs12769205, but upstream of rs4244285, failed to detect CYP2C19 protein in livers homozygous for rs12769205, demonstrating rs12769205 alone can lead to complete loss of CYP2C19 protein. CYP2C19 genotypes and mephenytoin phenotype were compared in 104 Ethiopians. Poor metabolism of mephenytoin was seen in persons homozygous for both rs12769205 and rs4244285 (CYP2C19*2/*2), but with little effect on mephenytoin disposition of CYP2C19*1/*2, CYP2C19*1/*3, or CYP2C19*1/*35 heterozygous alleles. Extended haplotype homozygosity tests of the HapMap Yorubans (YRI) showed both haplotypes carrying rs12769205 (CYP2C19*35 and CYP2C19*2) are under significant natural selection, with CYP2C19*35 having a higher relative extended haplotype homozygosity score. The phylogenetic tree of the YRI CYP2C19 haplotypes revealed rs12769205 arose first on CYP2C19*35 and that rs4244285 was added later, creating CYP2C19*2. In conclusion, rs12769205 is the ancestral polymorphism leading to aberrant splicing of CYP2C19*35 and CYP2C19*2 alleles in liver.


Assuntos
Citocromo P-450 CYP2C19/genética , Fígado/enzimologia , Acetilação , Adulto , Alelos , Citocromo P-450 CYP2C19/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Etiópia/epidemiologia , Éxons , Feminino , Frequência do Gene , Haplótipos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Mefenitoína/farmacocinética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Espectrometria de Massas em Tandem
18.
Pharm Res ; 31(8): 2035-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24549825

RESUMO

PURPOSE: OATP2B1-mediated grapefruit juice (GFJ)-drug interactions are substrate-dependent; for example, GFJ ingestion significantly reduces bioavailability of fexofenadine, but not pravastatin. In the present study, we aimed to establish whether this observation can be explained by the presence of multiple binding sites (MBS) on OATP2B1. METHODS: OATP2B1-mediated drug uptake was evaluated using a Xenopus oocyte expression system. Drug concentration was quantified by LC/MS/MS analysis. RESULTS: OATP2B1-mediated uptake of pravastatin and fexofenadine exhibited biphasic saturation kinetics, indicating the presence of MBS on OATP2B1. GFJ strongly inhibited pravastatin uptake mediated by the high-affinity site on OATP2B1, while no significant inhibition of the low-affinity site was observed. In contrast, high-affinity transport of fexofenadine was only modestly inhibited by GFJ, while significant inhibition of the low-affinity site was observed. Contribution analysis indicated that both drugs are transported via the low-affinity site on OATP2B1 at therapeutically relevant concentrations. These findings indicate that only fexofenadine is expected to interact with GFJ on OATP2B1 at therapeutic concentrations, in accordance with the clinical observations. CONCLUSION: Substrate- and dose-dependent GFJ-drug interactions mediated by OATP2B1 might be explained in terms of the presence of MBS: interaction occurs only when drug and GFJ components share the same binding site on OATP2B1.


Assuntos
Bebidas , Citrus paradisi/metabolismo , Interações Alimento-Droga/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Pravastatina/metabolismo , Terfenadina/análogos & derivados , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Oócitos , Pravastatina/farmacologia , Especificidade por Substrato , Terfenadina/metabolismo , Terfenadina/farmacologia , Xenopus laevis
19.
J Pharm Sci ; 113(4): 1113-1120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160712

RESUMO

Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.


Assuntos
Transportadores de Ânions Orgânicos , Animais , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Células HEK293 , Transporte Biológico , Fluoresceínas , Mamíferos/metabolismo
20.
Cell Physiol Biochem ; 32(4): 942-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24107783

RESUMO

BACKGROUND/AIMS: Although the cytotoxicity of aspirin against the intestinal epithelium is a major clinical problem, little is known about its pathogenesis. We assessed the involvement of Multi Drug Resistance (MDR) 1 in intestinal epithelial cell injury caused by aspirin using MDR1 gene-transfected Caco2 cells. METHODS: Caco2 cells were treated with various concentrations of aspirin for 24 h. After treatment of Caco2 cells with verapamil, a specific inhibitor of MDR1, we assessed the extent of cell injury using a WST-8 assay at 24 h after aspirin-stimulation. We performed the same procedure in MDR1 gene-transfected Caco2 cells. To determine the function of MDR1 in the metabolism of aspirin, flux study was performed using (14)C-labeled aspirin. RESULTS: The level of aspirin-induced cell injury was higher in verapamil-treated Caco2 cells than in control cells and was less serious in MDR1-transfected Caco2 cells than in control vector-transfected cells. The efflux of (14)C-labeled aspirin was higher in verapamil-treated Caco2 cells than in control cells. CONCLUSION: These data suggest that aspirin effux occurs through the MDR1 transporter and that the MDR1 transporter is involved in the pathogenesis of aspirin-induced cell injury.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aspirina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Intestinos/citologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Western Blotting , Células CACO-2 , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Sobrevivência Celular/genética , Humanos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa