Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(23): 15890-15900, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29845983

RESUMO

In order to tune the band positions of the hole-transporting material (HTM) in an interfacially engineered perovskite solar cell (PSC), random copolymers of poly(3-thiopheneacetic acid) and poly(3-hexylthiophene) (P3TAA-co-P3HT) with different compositions were produced by oxidative polymerization. The copolymers were characterized using 1H NMR, FTIR, and UV-vis spectroscopy and gel permeation chromatography. Here, ZnO nanoparticles were used as the electron-transporting material (ETM) and methylammonium lead iodide (MAPbI3) perovskite was used as the light-absorbing material to form an FTO/ZnO/MAPbI3/copolymer/Ag device, of which the power conversion efficiency (PCE) was found to be dependent on the copolymer composition and reached a maximum (∼10%) at a P3TAA content of 43 mol% in the copolymer (P3). The band gaps of the copolymers as determined from UV-vis spectroscopy and cyclic voltammetry exhibit a staggered-gap hetero-interface configuration in which the HOMO and LUMO of P3 closely match those of MAPbI3 and give rise to the maximum PCE. Time-resolved photoluminescence spectra of MAPbI3/HTM samples indicate that charge transfer across the perovskite/copolymer interface was faster with a reduced recombination rate for a P3 sample. The electrochemical impedance spectra (EIS) of the PSCs exhibit Nyquist plots with two semicircles, which correspond to an equivalent circuit consisting of two parallel R-C and R-CPE circuits connected in series. Analysis of the data indicates that the effective electron lifetime was longest for the P3 copolymer, which indicates that the charge recombination was lower than that in the components and other copolymers. The copolymers exhibited an intermediate stability with respect to their components, and amongst the copolymers P3 exhibited the highest stability.

2.
Phys Chem Chem Phys ; 18(15): 10182-90, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27020145

RESUMO

The properties of methyl ammonium lead iodide (MAPbI3) perovskite solar cells with poly(3-thiophene acetic acid) (P3TAA) as a hole transporting material (HTM) and a dense layer of ZnO nanoparticle film as an electron transporting material (ETM) are described using the conventional ZnO (n)/perovskite (i)/P3TAA (p) (n-i-p) architecture. The FT-IR spectra of a MAPbI3/P3TAA mixture indicate a shift of the N-H stretching and the abolition of the N-H bending peak indicating the interaction between the components. UV-Vis spectra of the mixture exhibit a large red shift of the π-π* transition peak of the conjugated chain arising from the interaction causing an increase of the conjugation length. The cross-sectional SEM image of the device shows the sequence of the individual layers of ZnO, MAPbI3, P3TAA and Ag, respectively. The current density (J)-voltage (V) curves obtained upon illumination with a light of 100 mW cm(-2) indicate the average PCE to be 7.38 ± 0.59% under ambient conditions. The IPCE values of these cells reach about 63% across a broad range of wavelength (300-800 nm). The HOMO and the LUMO of P3TAA are measured using cyclic voltammetry and the optical band gap and the relative energy level of the components explain the operation of photocurrent in the cell. For comparison purposes a device using poly(3-hexyl thiophene) (P3HT) as the HTM is fabricated under similar conditions and it exhibits a lower PCE (5.85 ± 0.51%) than that of the P3TAA based device. The longevity of the P3TAA based cell is also found to be better than that of the P3HT based cell for storing in air. The UV-Vis and impedance spectral results clearly explain the above results, signifying the influence of the interface on the performance of hybrid solar cells.

3.
Phys Chem Chem Phys ; 18(46): 31732-31743, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27841395

RESUMO

Composites of polyaniline (PANI) and cadmium sulfide nanoparticles (CdS NPs) are in situ synthesized by polymerizing aniline in acetic acid medium for different concentrations of CdS NPs. The composites, characterized by scanning and transmission electron microscopy, exhibit nanotubular morphology of PANI decorated with nanospheres of CdS NPs at their outer surface. The FTIR and UV-vis spectra indicate strong interaction between PANI and the CdS NPs suggesting a good conjugate for photovoltaic applications. The dc conductivities of the composite increase with an increase of the CdS concentration showing a maximum of 1.17 × 10-2 S cm-1 for the C200 sample (obtained by polymerizing 182 µL aniline with 200 mg CdS). The current-voltage plots indicate that the photocurrent is higher from the dark current and the separation between the dark current and photocurrent is maximum in C200. The effectiveness of these composites in DSSCs is studied under illumination of 100 mW cm-2 and the C200 device exhibits a maximum open circuit voltage of 0.73 V, a short circuit current of 8.22 mA cm-2, and a power conversion efficiency of 3.96%. The impedance study of the cells indicates that the lifetime of the photo-injected electrons is highest (1.34 ms) for the C200 sample, explaining the maximum PCE among the composites.

4.
Langmuir ; 30(25): 7547-55, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24912087

RESUMO

5,5'-(1,3,5,7-Tetraoxopyrrolo[3,4-f]isoindole-2,6-diyl)diisophthalic acid (PMDIG) is used to produce a supramolecular hydrogel via acid-base treatment. The field emission scanning electron micrograph and atomic force microscopy micrographs exhibit a fibrillar network structure from intermolecular supramolecular interaction, supported from Fourier transform infrared (FTIR) and UV-vis spectra. The fluorescence intensity of the PMDIG gel is 16 times higher than that of the sodium salt of PMDIG with a 42 nm red shift of the emission peak. Upon addition of an anilinium chloride solution to the PMDIG gel, it transforms into the sol, and when a solid ammonium persulfate is spread over it, a stable hydrogel is produced. The co-assembled PMDIG-polyaniline (PANI) gel exhibits a fibrillar network morphology, and the co-assembly is formed by the supramolecular interaction between the polyaniline (donor) and the PMDIG (acceptor) molecules, which is evident from FTIR spectra and wide angle X-ray scattering results. The UV-vis spectrum of the PMDIG-PANI hydrogel exhibits the characteristic peaks of polaron band transitions of the doped PANI. The PMDIG-PANI co-assembled hydrogel has a 51-fold higher storage modulus, a 52-fold higher elasticity, a 1.4-fold increase in stiffness, and a 5-fold increase of fragility compared to the values of the PMDIG hydrogel. The PMDIG-PANI xerogel exhibits a 4 order of magnitude increase in dc conductivity compared to that of PMDIG, and the I-V characteristic curve exhibits a rectification property under white light illumination showing photocurrent rectification, a new phenomenon reported here for the supramolecular gel systems. A dye-sensitized solar cell fabricated with an ITO/PMDIG-PANI/graphite device shows a power conversion efficiency (η) of 0.1%. A discussion of the mechanism of gel formation and the sol state of the PMDIG-aniline system is included considering the contact angle values of the xerogels.

5.
Phys Chem Chem Phys ; 16(37): 20079-88, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25132420

RESUMO

Polyaniline (PANI)-zinc sulphide (ZnS) nanocomposites (PAZs) are synthesized by polymerizing aniline in the presence of acetic acid with different concentrations of ZnS nanoparticles (NPs). FESEM and TEM images indicate the nanotube morphology of PANI and ZnS NPs remain adhered to the nanotube surface, but at higher ZnS concentration the nanotube morphology is lost. UV-vis spectra indicate PANI is in the doped state and the doping increases with an increase in ZnS concentration. Fluorescence intensity passes through a minimum with ZnS content and the dc-conductivity of the composites gradually increases with an increase in ZnS NP concentration. The I-V plot of PAZ composites indicates that the photocurrent is higher than that of the dark current at each voltage, and the device exhibits reversible turning "on" and "off" by switching the white light illumination "on" and "off". Dye-sensitized solar cells fabricated with PAZ composites display a reasonably higher power conversion efficiency (η = 3.38%) than pure ZnS NPs. An attempt is made to shed light on the operating mechanism of the DSSC from the impedance data using a Cole-Cole plot by drawing an equivalent circuit illustrating the different electronic and ionic transport processes within the cell.

6.
Acta Biomater ; 171: 406-416, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739252

RESUMO

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.3 to 35.9 mS/m. Alternatively, the tensile modulus of the DSCD hydrogel enhanced to 223 % after light-induced ROS treatment, which simultaneously impacted the capacitive response (120 %). The hydrogel implantation into inguinal white adipose tissue of HFD mice showed 82 % higher conductivity and 83 % enhanced pressure sensing response to HFD-generated high ROS levels compared with the normal diet-fed mice. Additionally, the ROS scavenging activity of DSCD hydrogel was confirmed by the downregulation of ROS-responsive genes, such as Sod2, Nrf2, and catalase (Cat) in murine primary hepatocytes isolated from fatty liver-induced mice. In addition, in vivo animal studies also confirmed the suppression of hepatic lipogenesis, as shown by decreased Pparγ and Fasn expression and hypertrophy of adipocytes in HFD mice. The distinguishable real-time wireless resistance response observed with pressure sensing indicates the potential application of the device for monitoring the risk of non-alcoholic fatty liver disease. STATEMENT OF SIGNIFICANCE: A visible-light-induced ROS-responsive carbon dot-loaded conductive hydrogel was developed for the detection of HFD-induced alterations in ROS levels by evaluating the conductivity and electrochemical responses with applied pressure/strain. The implanted hydrogel facilitates the recovery of the inflated adipocytes induced by NAFLD, which reduces fat accumulation in the liver, preventing the risk of NAFLD. Real-time detection based on the resistance response during local compression of the hydrogel is possibly performed utilizing a wireless sensing device, demonstrating the ease of NAFLD monitoring.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Fígado/metabolismo , Tecido Adiposo/metabolismo , Carbono , Camundongos Endogâmicos C57BL
7.
ACS Appl Mater Interfaces ; 12(30): 34105-34114, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32613826

RESUMO

We propose an integrated, self-powered, flexible electronic skin device containing an alginate-derived polymer dot (A-PD)-incorporated mineralized hydrogel-based energy storage unit and a chitosan-derived n-type carbon dot (N-CD)-based solar cell for an energy-harvesting unit. This study demonstrates a unique architecture of mineralized hydrogel comprising A-PD-incorporated poly(acrylic acid) (PAA)/CaCO3/laponite containing soft and sensitive layers, deposited with a polyaniline electrode to serve as an energy storage unit. The self-assembly was achieved through the ionic cross-linking between A-PD and PAA driven by the mineralization process, resulting in excellent dimensional stability and improved mechanical properties of the hydrogel. The sp2 carbon-rich A-PD enhances the electrochemical performance and the overall photon-to-electrical conversion and storage efficiency for self-powered devices by the formation of the bridge of electrons between the ionized polymer and metal ion. The capacitive sensor developed in this study exhibits high sensitivity in detecting small pressure changes, such as the falling of small water droplets. The self-powered sensing device can detect and monitor various human motions continuously by harvesting light energy from outdoor sunlight. Furthermore, the energy-autonomous device exhibits unique responses for handwriting characters stably and repeatedly. The proposed system may be applicable to human-machine interfaces, biomonitoring systems, secure communication, and wearable devices.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Pontos Quânticos/química , Dispositivos Eletrônicos Vestíveis , Alginatos/química , Carbonato de Cálcio/química , Carbono/química , Quitosana/química , Eletrodos , Silicatos/química , Energia Solar
8.
Materials (Basel) ; 13(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668661

RESUMO

Electrochemical water splitting is known as a potential approach for sustainable energy conversion; it produces H2 fuel by utilizing transition metal-based catalysts. We report a facile synthesis of FeCo2O4@carbon dots (CDs) nanoflowers supported on nickel foam through a hydrothermal technique in the absence of organic solvents and an inert environment. The synthesized material with a judicious choice of CDs shows superior performance in hydrogen and oxygen evolution reactions (HER and OER) compared to the FeCo2O4 electrode alone in alkaline media. For HER, the overpotential of 205 mV was able to produce current densities of up to 10 mA cm-2, whereas an overpotential of 393 mV was needed to obtain a current density of up to 50 mA cm-2 for OER. The synergistic effect between CDs and FeCo2O4 accounts for the excellent electrocatalytic activity, since CDs offer exposed active sites and subsequently promote the electrochemical reaction by enhancing the electron transfer processes. Hence, this procedure offers an effective approach for constructing metal oxide-integrated CDs as a catalytic support system to improve the performance of electrochemical water splitting.

9.
ACS Appl Mater Interfaces ; 8(41): 28055-28067, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27689537

RESUMO

Electrically conductive hydrogels are a fascinating class of materials that exhibit multifarious applications such as photoresponse, energy storage, etc., and the three-dimensional micro- and nanofibrillar structures of the gels are the key to those applications. Herein, we have synthesized a hybrid hydrogel based on folic acid (F) and polyaniline (PANI) in which F acts as a supramolecular cross-linker of PANI chains. The gels are mechanically robust and are characterized by field-emission scanning electron microscopy, transmission electron microscopy, and spectroscopic, rheological, and universal testing measurements. The hybrid xerogel exhibit a BET surface area 238 m2 g-1, conductivity of 0.04 S/cm, specific capacitance of 295 F/g at a current density of 1A/g, and photocurrent of ∼2 mA under white-light illumination. Silver nanoparticles (AgNPs) are in situ grown to elegantly improve the conductivity, energy storage, and photoresponse capability of the gels. The formation of AgNPs drastically improves the specific capacitances up to 646 F/g (at current density 1A/g), excellent rate capability (403 F/g at 20 A/g), and stable cycling performance with a retention ratio of 74% after 5000 cycles. The AgNPs embedded gel exhibits dramatic enhancement of photocurrent to 56 mA, and its time-dependent photoillumination corroborates faster rise and decay of current compared to those of folic acid-polyaniline hydrogel.

10.
ACS Appl Mater Interfaces ; 5(23): 12672-80, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24245528

RESUMO

A new and facile approach for synthesizing graphene quantum dots (GQDs) using sono-Fenton reaction in an aqueous dispersion of graphene oxide (GO) is reported. The transmission electron microscopy (TEM) micrographs of GQDs indicate its average diameter as ∼5.6 ± 1.4 nm having a lattice parameter of 0.24 nm. GQDs are used to fabricate composites (PG) with a water-soluble polymer, polythiophene-g-poly[(diethylene glycol methyl ether methacrylate)-co-poly(N,N-dimethylaminoethyl methacrylate)] [PT-g-P(MeO2MA-co-DMAEMA), P]. TEM micrographs indicate that both P and PG possess distinct core-shell morphology and the average particle size of P (0.16 ± 0.08 µm) increases in PG (0.95 ± 0.45 µm). Fourier transform infrared and X-ray photoelectron spectrometry spectra suggest an interaction between -OH and -COOH groups of GQDs and -NMe2 groups of P. A decrease of the intensity ratio of Raman D and G bands (ID/IG) is noticed during GQD and PG formation. In contrast to GO, GQDs do not exhibit any absorption peak for its smaller-sized sp(2) domain, and in PG, the π-π* absorption of polythiophene (430 nm) of P disappears. The photoluminescence (PL) peak of GQD shifts from 450 to 580 nm upon a change in excitation from 270 to 540 nm. PL emission of PG at 537 nm is quenched, and it shifts toward lower wavelength (∼430 nm) with increasing aging time for energy transfer from P to GQDs followed by up-converted emission of GQDs. Both P and PG exhibit semiconducting behavior, and PG produces an almost reproducible photocurrent. Dye-sensitized solar cells (DSSCs) fabricated with an indium-titanium oxide/PG/graphite device using the N719 dye exhibit a short-circuit current (Jsc) of 4.36 mA/cm(2), an open-circuit voltage (Voc) of 0.78 V, a fill factor of 0.52, and a power conversion efficiency (PCE, η) of 1.76%. Extending the use of GQDs to fabricate DSSCs with polypyrrole, both Voc and Jsc increase with increasing GQD concentration, showing a maximum PCE of 2.09%. The PG composite exhibits better cell viability than the components.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa