Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247051

RESUMO

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos
2.
Mov Disord ; 39(3): 546-559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173297

RESUMO

BACKGROUND: Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE: The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS: We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS: In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS: Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Estudos Longitudinais , Gânglios da Base/patologia , Substância Negra/patologia , Imageamento por Ressonância Magnética/métodos
3.
Br J Haematol ; 201(1): 114-124, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36329651

RESUMO

Brain injury is a common complication of sickle cell anaemia (SCA). White matter (WM) and cortical and subcortical grey matter (GM), structures may have reduced volume in patients with SCA. This study focuses on whether silent cerebral infarction (SCI), vasculopathy or anaemia affects WM and regional GM volumes in children living in Africa. Children with SCA (n = 144; aged 5-20 years; 74 male) and sibling controls (n = 53; aged 5-17 years; 29 male) underwent magnetic resonance imaging. Effects of SCI (n = 37), vasculopathy (n = 15), and haemoglobin were assessed. Compared with controls, after adjusting for age, sex and intracranial volume, patients with SCA had smaller volumes for WM and cortical, subcortical and total GM, as well as bilateral cerebellar cortex, globus pallidus, amygdala and right thalamus. Left globus pallidus volume was further reduced in patients with vasculopathy. Putamen and hippocampus volumes were larger in patients with SCA without SCI or vasculopathy than in controls. Significant positive effects of haemoglobin on regional GM volumes were confined to the controls. Patients with SCA generally have reduced GM volumes compared with controls, although some subcortical regions may be spared. SCI and vasculopathy may affect the trajectory of change in subcortical GM and WM volume. Brain volume in non-SCA children may be vulnerable to contemporaneous anaemia.


Assuntos
Anemia Falciforme , Acidente Vascular Cerebral , Substância Branca , Humanos , Masculino , Criança , Tanzânia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico por imagem , Anemia Falciforme/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
4.
Hum Brain Mapp ; 44(15): 5047-5064, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493334

RESUMO

Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate ( R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility and R 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. Significant R 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility and R 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and with R 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and with R 2 * in the caudate. Susceptibility and R 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility and R 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos
5.
Magn Reson Med ; 89(5): 1791-1808, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36480002

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is used increasingly for clinical research where oblique image acquisition is commonplace, but its effects on QSM accuracy are not well understood. THEORY AND METHODS: The QSM processing pipeline involves defining the unit magnetic dipole kernel, which requires knowledge of the direction of the main magnetic field B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ with respect to the acquired image volume axes. The direction of B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ is dependent on the axis and angle of rotation in oblique acquisition. Using both a numerical brain phantom and in vivo acquisitions in 5 healthy volunteers, we analyzed the effects of oblique acquisition on magnetic susceptibility maps. We compared three tilt-correction schemes at each step in the QSM pipeline: phase unwrapping, background field removal and susceptibility calculation, using the RMS error and QSM-tuned structural similarity index. RESULTS: Rotation of wrapped phase images gave severe artifacts. Background field removal with projection onto dipole fields gave the most accurate susceptibilities when the field map was first rotated into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ . Laplacian boundary value and variable-kernel sophisticated harmonic artifact reduction for phase data background field removal methods gave accurate results without tilt correction. For susceptibility calculation, thresholded k-space division, iterative Tikhonov regularization, and weighted linear total variation regularization, all performed most accurately when local field maps were rotated into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ before susceptibility calculation. CONCLUSION: For accurate QSM, oblique acquisition must be taken into account. Rotation of images into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ should be carried out after phase unwrapping and before background-field removal. We provide open-source tilt-correction code to incorporate easily into existing pipelines: https://github.com/o-snow/QSM_TiltCorrection.git.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
6.
Magn Reson Med ; 88(5): 2101-2116, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766450

RESUMO

PURPOSE: To compare different multi-echo combination methods for MRI QSM. Given the current lack of consensus, we aimed to elucidate how to optimally combine multi-echo gradient-recalled echo signal phase information, either before or after applying Laplacian-base methods (LBMs) for phase unwrapping or background field removal. METHODS: Multi-echo gradient-recalled echo data were simulated in a numerical head phantom, and multi-echo gradient-recalled echo images were acquired at 3 Tesla in 10 healthy volunteers. To enable image-based estimation of gradient-recalled echo signal noise, 5 volunteers were scanned twice in the same session without repositioning. Five QSM processing pipelines were designed: 1 applied nonlinear phase fitting over TEs before LBMs; 2 applied LBMs to the TE-dependent phase and then combined multiple TEs via either TE-weighted or SNR-weighted averaging; and 2 calculated TE-dependent susceptibility maps via either multi-step or single-step QSM and then combined multiple TEs via magnitude-weighted averaging. Results from different pipelines were compared using visual inspection; summary statistics of susceptibility in deep gray matter, white matter, and venous regions; phase noise maps (error propagation theory); and, in the healthy volunteers, regional fixed bias analysis (Bland-Altman) and regional differences between the means (nonparametric tests). RESULTS: Nonlinearly fitting the multi-echo phase over TEs before applying LBMs provided the highest regional accuracy of χ $$ \chi $$ and the lowest phase noise propagation compared to averaging the LBM-processed TE-dependent phase. This result was especially pertinent in high-susceptibility venous regions. CONCLUSION: For multi-echo QSM, we recommend combining the signal phase by nonlinear fitting before applying LBMs.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
7.
Brain ; 144(6): 1787-1798, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33704443

RESUMO

The mechanisms responsible for the selective vulnerability of specific neuronal populations in Parkinson's disease are poorly understood. Oxidative stress secondary to brain iron accumulation is one postulated mechanism. We measured iron deposition in 180 cortical regions of 96 patients with Parkinson's disease and 35 control subjects using quantitative susceptibility mapping. We estimated the expression of 15 745 genes in the same regions using transcriptomic data from the Allen Human Brain Atlas. Using partial least squares regression, we then identified the profile of gene transcription in the healthy brain that underlies increased cortical iron in patients with Parkinson's disease relative to controls. Applying gene ontological tools, we investigated the biological processes and cell types associated with this transcriptomic profile and identified the sets of genes with spatial expression profiles in control brains that correlated significantly with the spatial pattern of cortical iron deposition in Parkinson's disease. Gene ontological analyses revealed that these genes were enriched for biological processes relating to heavy metal detoxification, synaptic function and nervous system development and were predominantly expressed in astrocytes and glutamatergic neurons. Furthermore, we demonstrated that the genes differentially expressed in Parkinson's disease are associated with the pattern of cortical expression identified in this study. Our findings provide mechanistic insights into regional selective vulnerabilities in Parkinson's disease, particularly the processes involving iron accumulation.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Ferro/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuroimagem/métodos , Estresse Oxidativo/fisiologia , Transcriptoma
8.
Br J Neurosurg ; 36(2): 217-227, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33645357

RESUMO

PURPOSE: Intra-arterial Digital Subtraction Angiography (DSA) is the gold standard technique for radiosurgery target delineation in brain Arterio-Venous Malformations (AVMs). This study aims to evaluate whether a combination of three Magnetic Resonance Angiography sequences (triple-MRA) could be used for delineation of brain AVMs for Gamma Knife Radiosurgery (GKR). METHODS: Fifteen patients undergoing DSA for GKR targeting of brain AVMs also underwent triple-MRA: 4D Arterial Spin Labelling based angiography (ASL-MRA), Contrast-Enhanced Time-Resolved MRA (CE-MRA) and High Definition post-contrast Time-Of-Flight angiography (HD-TOF). The arterial phase of the AVM nidus was delineated on triple-MRA by an interventional neuroradiologist and a consultant neurosurgeon (triple-MRA volume). Triple-MRA volumes were compared to AVM targets delineated by the clinical team for delivery of GKR using the current planning paradigm, i.e., stereotactic DSA and volumetric MRI (DSA volume). Difference in size, degree of inclusion (DI) and concordance index (CcI) between DSA and triple-MRA volumes are reported. RESULTS: AVM target volumes delineated on triple-MRA were on average 9.8% smaller than DSA volumes (95%CI:5.6-13.9%; SD:7.14%; p = .003). DI of DSA volume in triple-MRA volume was on average 73.5% (95%CI:71.2-76; range: 65-80%). The mean percentage of triple-MRA volume not included on DSA volume was 18% (95%CI:14.7-21.3; range: 7-30%). CONCLUSION: The technical feasibility of using triple-MRA for visualisation and delineation of brain AVMs for GKR planning has been demonstrated. Tighter and more precise delineation of AVM target volumes could be achieved by using triple-MRA for radiosurgery targeting. However, further research is required to ascertain the impact this may have in obliteration rates and side effects.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiocirurgia , Angiografia Digital/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/radioterapia , Malformações Arteriovenosas Intracranianas/cirurgia , Angiografia por Ressonância Magnética/métodos , Radiocirurgia/métodos
9.
Neuroimage ; 240: 118399, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273528

RESUMO

Quantitative susceptibility mapping (QSM) is a promising non-invasive method for obtaining information relating to oxygen metabolism. However, the optimal acquisition sequence and QSM reconstruction method for reliable venous susceptibility measurements are unknown. Full flow compensation is generally recommended to correct for the influence of venous blood flow, although the effect of flow compensation on the accuracy of venous susceptibility values has not been systematically evaluated. In this study, we investigated the effect of different acquisition sequences, including different flow compensation schemes, and different QSM reconstruction methods on venous susceptibilities. Ten healthy subjects were scanned with five or six distinct QSM sequence designs using monopolar readout gradients and different flow compensation schemes. All data sets were processed using six different QSM pipelines and venous blood susceptibility was evaluated in whole-brain segmentations of the venous vasculature and single veins. The quality of vein segmentations and the accuracy of venous susceptibility values were analyzed and compared between all combinations of sequences and reconstruction methods. The influence of the QSM reconstruction method on average venous susceptibility values was found to be 2.7-11.6 times greater than the influence of the acquisition sequence, including flow compensation. The majority of the investigated QSM reconstruction methods tended to underestimate venous susceptibility values in the vein segmentations that were obtained. In summary, we found that multi-echo gradient-echo acquisition sequences without full flow compensation yielded venous susceptibility values comparable to sequences with full flow compensation. However, the QSM reconstruction method had a great influence on susceptibility values and thus needs to be selected carefully for accurate venous QSM.


Assuntos
Veias Cerebrais/diagnóstico por imagem , Circulação Cerebrovascular , Angiografia por Ressonância Magnética/métodos , Adulto , Algoritmos , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Projetos Piloto , Adulto Jovem
10.
Neuroimage ; 238: 118102, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058334

RESUMO

OBJECTIVE: Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS: QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS: Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION: QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Ferro/metabolismo , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Zinco/metabolismo , Adolescente , Mapeamento Encefálico , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Substância Cinzenta/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/metabolismo , Estudos Retrospectivos , Adulto Jovem
11.
Magn Reson Med ; 86(5): 2512-2527, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270122

RESUMO

PURPOSE: To characterize microstructural contributions to the magnetic susceptibility of carotid arteries. METHOD: Arterial vessels were scanned using high-resolution quantitative susceptibility mapping (QSM) at 7 Tesla. Models of vessel degradation were generated using ex vivo porcine carotid arteries that were subjected to several different enzymatic digestion treatments that selectively removed microstructural components (smooth muscle cells, collagen, and elastin). Magnetic susceptibilities measured in these tissue models were compared to those in untreated (native) porcine arteries. Magnetic susceptibility measured in native porcine carotid arteries was further compared to the susceptibility of cadaveric human carotid arteries to investigate their similarity. RESULTS: The magnetic susceptibility of native porcine vessels was diamagnetic (χnative = -0.1820 ppm), with higher susceptibilities in all models of vessel degradation (χelastin-degraded = -0.0163 ppm; χcollagen-degraded = -0.1158 ppm; χdecellularized = -0.1379 ppm; χfixed native = -0.2199 ppm). Magnetic susceptibility was significantly higher in collagen-degraded compared to native porcine vessels (Tukey-Kramer, P < .01) and between elastin-degraded and all other models (including native, Tukey-Kramer, P < .001). The susceptibility of fixed healthy human arterial tissue was diamagnetic, and no significant difference was found between fixed human and fixed porcine arterial tissue susceptibilities (analysis of variance, P > .05). CONCLUSIONS: Magnetic susceptibility measured using QSM is sensitive to the microstructural composition of arterial vessels-most notably to collagen. The similarity of human and porcine arterial tissue susceptibility values provides a solid basis for translational studies. Because vessel microstructure becomes disrupted during the onset and progression of carotid atherosclerosis, QSM has the potential to provide a sensitive and specific marker of vessel disease.


Assuntos
Artérias Carótidas , Doenças das Artérias Carótidas , Animais , Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/diagnóstico por imagem , Colágeno , Humanos , Imageamento por Ressonância Magnética , Suínos
12.
Magn Reson Med ; 85(4): 2294-2308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104278

RESUMO

PURPOSE: To develop a rapid and accurate MRI phase-unwrapping technique for challenging phase topographies encountered at high magnetic fields, around metal implants, or postoperative cavities, which is sufficiently fast to be applied to large-group studies including Quantitative Susceptibility Mapping and functional MRI (with phase-based distortion correction). METHODS: The proposed path-following phase-unwrapping algorithm, ROMEO, estimates the coherence of the signal both in space-using MRI magnitude and phase information-and over time, assuming approximately linear temporal phase evolution. This information is combined to form a quality map that guides the unwrapping along a 3D path through the object using a computationally efficient minimum spanning tree algorithm. ROMEO was tested against the two most commonly used exact phase-unwrapping methods, PRELUDE and BEST PATH, in simulated topographies and at several field strengths: in 3T and 7T in vivo human head images and 9.4T ex vivo rat head images. RESULTS: ROMEO was more reliable than PRELUDE and BEST PATH, yielding unwrapping results with excellent temporal stability for multi-echo or multi-time-point data. It does not require image masking and delivers results within seconds, even in large, highly wrapped multi-echo data sets (eg, 9 seconds for a 7T head data set with 31 echoes and a 208 × 208 × 96 matrix size). CONCLUSION: Overall, ROMEO was both faster and more accurate than PRELUDE and BEST PATH, delivering exact results within seconds, which is well below typical image acquisition times, enabling potential on-console application.


Assuntos
Algoritmos , Encéfalo , Animais , Encéfalo/diagnóstico por imagem , Cabeça , Imageamento por Ressonância Magnética , Ratos
13.
NMR Biomed ; 34(2): e4438, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219598

RESUMO

The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. We demonstrate that susceptibility variations in white and grey matter areas could be attributed to reduction in myelin, accumulation of iron and calcium, and gliosis. QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.


Assuntos
Química Encefálica , Dano Encefálico Crônico/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Dano Encefálico Crônico/etiologia , Lesões Encefálicas Traumáticas/complicações , Mapeamento Encefálico/métodos , Cálcio/análise , Contagem de Células , Corpo Caloso/química , Corpo Caloso/diagnóstico por imagem , Gliose/diagnóstico por imagem , Substância Cinzenta/química , Substância Cinzenta/diagnóstico por imagem , Ferro/análise , Masculino , Bainha de Mielina/química , Ratos , Ratos Sprague-Dawley , Substância Branca/química , Substância Branca/diagnóstico por imagem
14.
Magn Reson Med ; 84(6): 3206-3222, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621302

RESUMO

PURPOSE: Quantitative Susceptibility Mapping (QSM) is an emerging technique sensitive to disease-related changes including oxygenation. It is extensively used in brain studies and has increasing clinical applications outside the brain. Here we present the first MRI acquisition protocol and QSM pipeline optimized for the head-and-neck region together with a repeatability analysis performed in healthy volunteers. METHODS: We investigated both the intrasession and the intersession repeatability of the optimized method in 10 subjects. We also implemented two, Tikhonov-regularisation-based susceptibility calculation techniques that were found to have higher contrast-to-noise than existing methods in the head-and-neck region. Repeatability was evaluated by calculating the distributions of susceptibility differences between repeated scans and the corresponding minimum detectable effect sizes (MDEs). RESULTS: Deep brain regions had higher QSM repeatability than neck regions. As expected, intrasession repeatability was generally better than intersession repeatability. Susceptibility maps calculated using projection onto dipole fields for background field removal were more repeatable than using the Laplacian boundary value method in the head-and-neck region. Small (short-axis diameter <5 mm) lymph nodes had the lowest repeatability (MDE = 0.27 ppm) as imperfect segmentation included some of the surrounding paramagnetic fatty fascia, highlighting the importance of accurate region delineation. MDEs in the larger lymph nodes (0.16 ppm), submandibular glands (0.10 ppm), and especially the parotid glands (0.06 ppm) were much lower, comparable to those of the brain regions. CONCLUSIONS: The high repeatability of the acquisition and pipeline optimized for QSM will facilitate clinical studies in the head-and-neck region.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cabeça/diagnóstico por imagem , Humanos , Pescoço/diagnóstico por imagem
15.
Magn Reson Med ; 84(6): 3040-3053, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32491224

RESUMO

PURPOSE: Multi-echo gradient-recalled echo acquisitions for QSM enable optimizing the SNR for several tissue types through multi-echo (TE) combination or investigating temporal variations in the susceptibility (potentially reflecting tissue microstructure) by calculating one QSM image at each TE (TE-dependent QSM). In contrast with multi-echo QSM, applying Laplacian-based methods (LBMs) for phase unwrapping and background field removal to single TEs could introduce nonlinear temporal variations (independent of tissue microstructure) into the measured susceptibility. Here, we aimed to compare the effect of LBMs on the QSM susceptibilities in TE-dependent versus multi-echo QSM. METHODS: TE-dependent recalled echo data simulated in a numerical head phantom and gradient-recalled echo images acquired at 3 T in 10 healthy volunteers. Several QSM pipelines were tested, including four distinct LBMs: sophisticated harmonic artifact reduction for phase data (SHARP), variable-radius sophisticated harmonic artifact reduction for phase data (V-SHARP), Laplacian boundary value background field removal (LBV), and one-step total generalized variation (TGV). Results from distinct pipelines were compared using visual inspection, summary statistics of susceptibility in deep gray matter/white matter/venous regions of interest, and, in the healthy volunteers, regional susceptibility bias analysis and nonparametric tests. RESULTS: Multi-echo versus TE-dependent QSM had higher regional accuracy, especially in high-susceptibility regions and at shorter TEs. Everywhere except in the veins, a processing pipeline incorporating TGV provided the most temporally stable TE-dependent QSM results with an accuracy similar to multi-echo QSM. CONCLUSIONS: For TE-dependent QSM, carefully choosing LBMs can minimize the introduction of LBM-related nonlinear temporal susceptibility variations.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Algoritmos , Encéfalo/diagnóstico por imagem , Cabeça , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
16.
Neuroimage ; 199: 440-453, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075392

RESUMO

Brain arteriovenous malformations (AVMs) are congenital vascular anomalies characterized by arteriovenous shunting through a network of coiled and tortuous vessels. Because of this anatomy, the venous drainage of an AVM is hypothesized to contain more oxygenated, arterialized blood than healthy veins. By exploiting the paramagnetic properties of deoxygenated hemoglobin in venous blood using magnetic resonance imaging (MRI) quantitative susceptibility mapping (QSM), we aimed to explore venous density and oxygen saturation (SvO2) in patients with a brain AVM. We considered three groups of subjects: patients with a brain AVM before treatment using gamma knife radiosurgery (GKR); patients three or more years post-GKR treatment; and healthy volunteers. First, we investigated the appearance of AVMs on QSM images. Then, we investigated whether QSM could detect increased SvO2 in the veins draining the malformations. In patients before GKR, venous density, but not SvO2, was significantly larger in the hemisphere containing the AVM compared to the contralateral hemisphere (p = 0.03). Such asymmetry was not observed in patients after GKR or in healthy volunteers. Moreover, in all patients before GKR, the vein immediately draining the AVM nidus had a higher SvO2 than healthy veins. Therefore, QSM can be used to detect SvO2 alterations in brain AVMs. However, since factors such as flow-induced signal dephasing or the presence of hemosiderin deposits also strongly affect QSM image contrast, AVM vein segmentation must be performed based on alternative MRI acquisitions, e.g., time of flight magnetic resonance angiography or T1-weighted images. This is the first study to show, non-invasively, that AVM draining veins have a significantly larger SvO2 than healthy veins, which is a finding congruent with arteriovenous shunting.


Assuntos
Fístula Arteriovenosa/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Hemoglobinas , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Oxigênio/sangue , Adolescente , Adulto , Fístula Arteriovenosa/radioterapia , Feminino , Seguimentos , Humanos , Malformações Arteriovenosas Intracranianas/radioterapia , Masculino , Pessoa de Meia-Idade , Radiocirurgia , Adulto Jovem
17.
Magn Reson Med ; 81(3): 1833-1848, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30338864

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) has found increasing clinical applications. However, to reduce scan time, clinical acquisitions often use reduced resolution and coverage, particularly in the through-slice dimension. The effect of these factors on QSM has begun to be assessed using only balloon phantoms and downsampled brain images. Here, we investigate the effects (and their sources) of low resolution or coverage on QSM using both simulated and acquired images. METHODS: Brain images were acquired at 1 mm isotropic resolution and full brain coverage, and low resolution (up to 6 mm slice thickness) or coverage (down to 20 mm) in 5 healthy volunteers. Images at reduced resolution or coverage were also simulated in these volunteers and in a new, anthropomorphic, numerical phantom. Mean susceptibilities in 5 brain regions, including white matter, were investigated over varying resolution and coverage. RESULTS: The susceptibility map contrast decreased with increasing slice thickness and spacing, and with decreasing coverage below ~40 mm for 2 different QSM pipelines. Our simulations showed that calculated susceptibility values were erroneous at low resolution or very low coverage, because of insufficient sampling and overattenuation of the susceptibility-induced field perturbations. Susceptibility maps calculated from simulated and acquired images showed similar behavior. CONCLUSIONS: Both low resolution and low coverage lead to loss of contrast and errors in susceptibility maps. The widespread clinical practice of using low resolution and coverage does not provide accurate susceptibility maps. Simulations in images of healthy volunteers and in a new, anthropomorphic numerical phantom were able to accurately model low-resolution and low-coverage acquisitions.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Adulto , Algoritmos , Antropometria , Mapeamento Encefálico/métodos , Simulação por Computador , Feminino , Cabeça/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tronco/diagnóstico por imagem
18.
Magn Reson Med ; 81(4): 2666-2675, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450573

RESUMO

PURPOSE: This preclinical study investigated the use of QSM MRI to noninvasively measure venous oxygen saturation (SvO2) in the hepatic and portal veins. METHODS: QSM data were acquired from a cohort of healthy mice (n = 10) on a 9.4 Tesla MRI scanner under normoxic and hyperoxic conditions. Susceptibility was measured in the portal and hepatic veins and used to calculate SvO2 in each vessel under each condition. Blood was extracted from the inferior vena cava of 3 of the mice under each condition, and SvO2 was measured with a blood gas analyzer for comparison. QSM data were also acquired from a cohort of mice bearing liver tumors under normoxic conditions. Susceptibility was measured, and SvO2 calculated in the portal and hepatic veins and compared to the healthy mice. Statistical significance was assessed using a Wilcoxon matched-pairs signed rank test (normoxic vs. hyperoxic) or a Mann-Whitney test (healthy vs. tumor bearing). RESULTS: SvO2 calculated from QSM measurements in healthy mice under hyperoxia showed significant increases of 15% in the portal vein (P < 0.05) and 21% in the hepatic vein (P < 0.01) versus normoxia. These values agreed with inferior vena cava measurements from the blood gas analyzer (26% increase). SvO2 in the hepatic vein was significantly lower in the colorectal liver metastases cohort (30% ± 11%) than the healthy mice (53% ± 17%) (P < 0.05); differences in the portal vein were not significant. CONCLUSION: QSM is a feasible tool for noninvasively measuring SvO2 in the liver and can detect differences due to increased oxygen consumption in livers bearing colorectal metastases.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Veias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Veia Porta/diagnóstico por imagem , Animais , Gasometria , Calibragem , Veias Cerebrais , Neoplasias Colorretais/patologia , Feminino , Hiperóxia , Camundongos , Metástase Neoplásica , Neoplasias Experimentais , Oximetria , Consumo de Oxigênio , Respiração , Taxa Respiratória , Água
19.
Magn Reson Med ; 81(5): 3094-3107, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30615213

RESUMO

PURPOSE: To evaluate the relationship between bone mineral density (BMD) and magnetic susceptibility, and between proton density fat fraction and susceptibility, in inflamed trabecular bone. METHODS: Two different phantoms modeling the fat fraction (FF) and BMD values of healthy bone marrow and disease states were scanned using a multiecho gradient echo acquisition at 3T. After correction for fat-water chemical shift, susceptibility mapping was performed, and susceptibility measurements were compared with BMD and FF values using linear regression. Patients with spondyloarthritis were scanned using the same protocol, and susceptibility values were calculated in areas of inflamed bone (edema) and fat metaplasia, both before and after accounting for the contribution of fat to the total susceptibility. RESULTS: Susceptibility values in the phantoms were accurately described by a 2D linear function, with a negative correlation between BMD and susceptibility and a positive correlation between FF and susceptibility (adjusted R2 = 0.77; P = 3·10-5 ). In patients, significant differences in susceptibility were observed between fat metaplasia and normal marrow, but these differences were eliminated by removing the fat contribution to the total susceptibility. CONCLUSIONS: BMD and proton density fat fraction both influence the total susceptibility of bone marrow and failure to account for the fat contribution could lead to errors in BMD quantification. We propose a method for removing the fat contribution from the total susceptibility, based on the observed linear relationship between susceptibility and FF. In inflamed bone, the overall increase in susceptibility in areas of fat metaplasia is at least partly due to increased fat content.


Assuntos
Tecido Adiposo/patologia , Densidade Óssea , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Osso Esponjoso/patologia , Espondilartrite/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Adolescente , Adulto , Osso Esponjoso/diagnóstico por imagem , Criança , Edema/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Magnetismo , Imagens de Fantasmas , Prótons , Reprodutibilidade dos Testes , Adulto Jovem
20.
Magn Reson Med ; 80(4): 1638-1654, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29504144

RESUMO

PURPOSE: To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. METHODS: A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. RESULTS: A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T1 of water and B1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. CONCLUSION: Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Infarto Encefálico/diagnóstico por imagem , Masculino , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa