Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2201947120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745789

RESUMO

We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.


Assuntos
Biodiversidade , Ecossistema , Animais , Mamíferos , Clima
2.
Nat Commun ; 14(1): 4016, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463920

RESUMO

Mammalian megafauna have been critical to the functioning of Earth's biosphere for millions of years. However, since the Plio-Pleistocene, their biodiversity has declined concurrently with dramatic environmental change and hominin evolution. While these biodiversity declines are well-documented, their implications for the ecological function of megafaunal communities remain uncertain. Here, we adapt ecometric methods to evaluate whether the functional link between communities of herbivorous, eastern African megafauna and their environments (i.e., functional trait-environment relationships) was disrupted as biodiversity losses occurred over the past 7.4 Ma. Herbivore taxonomic and functional diversity began to decline during the Pliocene as open grassland habitats emerged, persisted, and expanded. In the mid-Pleistocene, grassland expansion intensified, and climates became more variable and arid. It was then that phylogenetic diversity declined, and the trait-environment relationships of herbivore communities shifted significantly. Our results divulge the varying implications of different losses in megafaunal biodiversity. Only the losses that occurred since the mid-Pleistocene were coincident with a disturbance to community ecological function. Prior diversity losses, conversely, occurred as the megafaunal species and trait pool narrowed towards those adapted to grassland environments.


Assuntos
Evolução Biológica , Hominidae , Animais , Filogenia , Ecossistema , Biodiversidade , Mamíferos , Fósseis
3.
Ecology ; 104(1): e3864, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062374

RESUMO

Following the near extinction of bison (Bison bison) from its historic range across North America in the late 19th century, novel bison conservation efforts in the early 20th century catalyzed a popular widespread conservation movement to protect and restore bison among other species and places. Since Allen's initial delineation (1876) of the historic distribution of North American bison, subsequent attempts have been hampered by knowledge gaps about bison distribution and abundance prior to and following colonial arrival and settlement. For the first time, we applied a multidisciplinary approach to assemble a comprehensive, integrated geographic database and meta-analysis of bison occurrence over the last 200,000 years, with particular emphasis on the 450 years before present. We combined paleontology, archaeology, and historical ecology data for our database, which totaled 6438 observations. We derived the observations from existing online databases, published literature, and first-hand exploration journal entries. To illustrate the conservative maximum historical extent of occurrence of bison, we created a concave hull using observations occurring over the last 450 years (n = 3379 observations), which is the broadly accepted historical benchmark at 1500 CE covering 59% of the North American continent. Although this distribution represents a historic extent of occurrence-merely delineating the maximum margins of the near-continental distribution-it does not replace a density-based approach reconstructing potential historical range distributions, which identifies core and marginal ranges. However, we envision the observations contained in this database will contribute to further research in the increasingly evidence-based disciplines of bison ecology, evolution, rewilding, management, and conservation. There are no copyright or proprietary restrictions on these data, and this data paper should be cited when the data are reused.


Assuntos
Bison , Animais , América do Norte , Ecologia
4.
Ecol Evol ; 11(1): 587-598, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437453

RESUMO

Ecometrics is the study of community-level functional trait-environment relationships. We use ecometric analyses to estimate paleoenvironment and to investigate community-level functional changes through time.We evaluate four methods that have been used or have the potential to be used in ecometric analyses for estimating paleoenvironment to determine whether there have been systematic differences in paleoenvironmental estimation due to choice of the estimation method. Specifically, we evaluated linear regression, polynomial regression, nearest neighbor, and maximum-likelihood methods to explore the predictive ability of the relationship for a well-known ecometric dataset of mammalian herbivore hypsodonty metrics (molar tooth crown to root height ratio) and annual precipitation. Each method was applied to 43 Pleistocene fossil sites and compared to annual precipitation from global climate models. Sites were categorized as glacial or interglacial, and paleoprecipitation estimates were compared to the appropriate model.Estimation methods produce results that are highly correlated with log precipitation and estimates from the other methods (p < 0.001). Differences between estimated precipitation and observed precipitation are not significantly different across the four methods, but maximum likelihood produces the most accurate estimates of precipitation. When applied to paleontological sites, paleoprecipitation estimates align more closely with glacial global climate models than with interglacial models regardless of the age of the site.Each method has constraints that are important to consider when designing ecometric analyses to avoid misinterpretations when ecometric relationships are applied to the paleontological record. We show interglacial fauna estimates of paleoprecipitation more closely match glacial global climate models. This is likely because of the anthropogenic effects on community reassembly in the Holocene.

5.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33036965

RESUMO

Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal learning opportunities and have the greatest potential to reach underserved populations, particularly in rural or high poverty counties. Most counties that are underserved by ILIs occur in the Great Plains, the southeast, and the northwest. Furthermore, these counties have higher Indigenous populations who are underrepresented in STEM careers. These unexpected geographic gaps represent opportunities for investments in ILI offerings through collaborations and expansion of existing resources.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa