Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Genet ; 102(1): 72-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347702

RESUMO

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Assuntos
Encefalopatias , Deficiência Intelectual , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Mutação , Fenótipo , Domínios de Homologia à Plecstrina
2.
Hum Mutat ; 42(7): 835-847, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33847015

RESUMO

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.


Assuntos
Deficiência Intelectual , Expressão Gênica , Genes Ligados ao Cromossomo X , Genômica , Humanos , Deficiência Intelectual/diagnóstico , Linhagem
3.
Neurobiol Dis ; 153: 105329, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711494

RESUMO

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17ß-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling (n = 14/treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n = 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures. Treated PA2 mice had an earlier onset of seizures coupled with a subsequent reduction in seizures later in postnatal life, with a complete absence of any seizures during the analysis at 7 weeks of age. Despite the reduction in seizures, 17ß-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC > ± 0.5, P-value<0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17ß-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17ß-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Convulsões/genética , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Intervenção Médica Precoce , Regulação da Expressão Gênica/genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Camundongos , Transtornos do Neurodesenvolvimento/genética , Peptídeos/genética , Convulsões/fisiopatologia , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia
4.
Hum Mol Genet ; 28(24): 4089-4102, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31691806

RESUMO

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.


Assuntos
Histona Desmetilases/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
5.
Hum Mutat ; 41(8): 1407-1424, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383243

RESUMO

The need to interpret the pathogenicity of novel missense variants of unknown significance identified in the homeodomain of X-chromosome aristaless-related homeobox (ARX) gene prompted us to assess the utility of conservation and constraint across these domains in multiple genes compared to conventional in vitro functional analysis. Pathogenic missense variants clustered in the homeodomain of ARX contribute to intellectual disability (ID) and epilepsy, with and without brain malformation in affected males. Here we report novel c.1112G>A, p.Arg371Gln and c.1150C>T, p.Arg384Cys variants in male patients with ID and severe seizures. The third case of a male patient with a c.1109C>T, p.Ala370Val variant is perhaps the first example of ID and autism spectrum disorder (ASD), without seizures or brain malformation. We compiled data sets of pathogenic variants from ClinVar and presumed benign variation from gnomAD and demonstrated that the high levels of sequence conservation and constraint of benign variation within the homeodomain impacts upon the ability of publicly available in silico prediction tools to accurately discern likely benign from likely pathogenic variants in these data sets. Despite this, considering the inheritance patterns of the genes and disease variants with the conservation and constraint of disease variants affecting the homeodomain in conjunction with current clinical assessments may assist in predicting the pathogenicity of missense variants, particularly for genes with autosomal recessive and X-linked patterns of disease inheritance, such as ARX. In vitro functional analysis demonstrates that the transcriptional activity of all three variants was diminished compared to ARX-Wt. We review the associated phenotypes of the published cases of patients with ARX homeodomain variants and propose expansion of the ARX-related phenotype to include severe ID and ASD without brain malformations or seizures. We propose that the use of the constraint and conservation data in conjunction with consideration of the patient phenotype and inheritance pattern may negate the need for the experimental functional validation currently required to achieve a diagnosis.


Assuntos
Epilepsia/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Transtorno do Espectro Autista/genética , Pré-Escolar , Sequência Conservada , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Domínios Proteicos , Adulto Jovem
6.
Hum Mutat ; 40(1): 5-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328660

RESUMO

The IQSEC2- related disorders represent a spectrum of X-chromosome phenotypes with intellectual disability (ID) as the cardinal feature. Here, we review the increasing number of reported families and isolated cases have been reported with a variety of different pathogenic variants. The spectrum of clinical features is expanding with early-onset seizures as a frequent comorbidity in both affected male and female patients. There is a growing number of female patients with de novo loss-of-function variants in IQSEC2 have a more severe phenotype than the heterozygous state would predict, particularly if IQSEC2 is thought to escape X-inactivation. Interestingly, these findings highlight that the classical understanding of X-linked inheritance does not readily explain the emergence of these affected females, warranting further investigations into the underlying mechanisms.


Assuntos
Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação/genética , Feminino , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Fenótipo
7.
Am J Med Genet A ; 179(8): 1483-1490, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145546

RESUMO

Pathogenic variants in the X-chromosome Aristaless-related homeobox (ARX) gene contribute to intellectual disability, epilepsy, and associated comorbidities in affected males. Here, we report a novel splice variant in ARX in a family with three affected individuals. The proband had early onset developmental and epileptic encephalopathy, his brother and mother had severe and mild intellectual disability, respectively. Massively parallel sequencing identified a novel c.1449-1G>C in intron 4 of the ARX gene, predicted to abolish the splice acceptor site, retaining intron 4 and leading to a premature termination codon immediately after exon 4. As exon 5 is the last exon of the ARX gene, the premature termination codon at position p.L484* would be predicted to escape nonsense-mediated mRNA decay, potentially producing at least some C-terminally truncated protein. Analysis of cDNA from patient lymphoblastoid cells confirmed retention of intron 4 and loss of detectable expression of ARX mRNA across exon 4 to exon 5. We review published cases of variants that lead to altered or early termination of the ARX protein, but not complete loss of function, and are associated with phenotypes of intellectual disability and infantile onset developmental and epileptic encephalopathies, including Ohtahara and West syndromes. Taken together, this novel splice variant retaining intron 4 is likely to be the cause of the early onset developmental and epileptic encephalopathy in the proband.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Mutação , Splicing de RNA , Espasmos Infantis/genética , Fatores de Transcrição/genética , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Sequência de Bases , Criança , Pré-Escolar , Éxons , Família , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Íntrons , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Linhagem , Espasmos Infantis/diagnóstico , Espasmos Infantis/fisiopatologia , Fatores de Transcrição/deficiência
8.
Hum Mol Genet ; 25(24): 5433-5443, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798109

RESUMO

The Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in embryonic development. Mutations in ARX give rise to intellectual disability (ID), epilepsy and brain malformation syndromes. To capture the genetics and molecular disruptions that underpin the ARX-associated clinical phenotypes, we undertook a transcriptome wide RNASeq approach to analyse developing (12.5 dpc) telencephalon of mice modelling two recurrent polyalanine expansion mutations with different phenotypic severities in the ARX gene. Here we report 238 genes significantly deregulated (Log2FC > +/-1.1, P-value <0.05) when both mutations are compared to wild-type (WT) animals. When each mutation is considered separately, a greater number of genes were deregulated in the severe PA1 mice (825) than in the PA2 animals (78). Analysing genes deregulated in either or both mutant strains, we identified 12% as implicated in ID, epilepsy and autism (99/858), with ∼5% of them as putative or known direct targets of ARX transcriptional regulation. We propose a core pathway of transcription regulators, including Hdac4, involved in chromatin condensation and transcriptional repression, and one of its targets, the transcription factor Twist1, as potential drivers of the ID and infantile spasms in patients with ARX polyalanine expansion mutations. We predict that the subsequent disturbance to this pathway is a consequence of ARX protein reduction with a broader and more significant level of disruption in the PA1 in comparison to the PA2 mice. Identifying early triggers of ARX-associated phenotypes contributes to our understanding of particular clusters/pathways underpinning comorbid phenotypes that are shared by many neurodevelopmental disorders.


Assuntos
Epilepsia/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Peptídeos/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Animais , Modelos Animais de Doenças , Epilepsia/patologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Mutação , Fenótipo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Biossíntese de Proteínas/genética , Transdução de Sinais , Telencéfalo/embriologia , Telencéfalo/metabolismo
9.
Hum Mutat ; 38(5): 548-555, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28150386

RESUMO

The devastating clinical presentation of X-linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss-of-function mutations in the Aristaless-related homeobox (ARX) gene. Mutations in this X-chromosome gene contribute to intellectual disability (ID) with co-morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing. We present a family with multiple affected individuals, including two females. Two male siblings presenting with XLAG were deceased prior to full-term gestation or within the first few weeks of life. Of the two female siblings, one presented with behavioral disturbances, mild ID, a seizure disorder, and complete agenesis of the corpus callosum (ACC), similar to the mother's phenotype. A novel insertion mutation in Exon 2 of ARX was identified, c.982delCinsTTT predicted to cause a frameshift at p.(Q328Ffs* 37). Our finding is consistent with loss-of-function mutations in ARX causing XLAG in hemizygous males and extends the findings of ID and seizures in heterozygous females. We review the reported phenotypes of females with mutations in ARX and highlight the importance of screening ARX in male and female patients with ID, seizures, and in particular with complete ACC.


Assuntos
Estudos de Associação Genética , Proteínas de Homeodomínio/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Encéfalo/patologia , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Feminino , Genes Ligados ao Cromossomo X , Proteínas de Homeodomínio/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Fatores de Transcrição/metabolismo
10.
BMC Genomics ; 18(1): 10, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049421

RESUMO

BACKGROUND: Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships. RESULTS: In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse indicating conserved molecular networks involved in placental development and gene expression patterns more specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally, we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia. By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed in preeclampsia. CONCLUSIONS: This study represents a comprehensive characterisation of placental co-expression and provides insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental development.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Placenta/metabolismo , Transcriptoma , Animais , Sítios de Ligação , Análise por Conglomerados , Epigênese Genética , Evolução Molecular , Feminino , Redes Reguladoras de Genes , Idade Gestacional , Humanos , Camundongos , Gravidez , Ligação Proteica , Fatores de Transcrição/metabolismo
11.
Neurobiol Dis ; 105: 245-256, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28602636

RESUMO

The Aristaless-related homeobox gene (ARX) is a known intellectual disability (ID) gene that frequently presents with X-linked infantile spasm syndrome as a comorbidity. ID with epilepsy in children is a chronic and devastating disorder that has poor treatment options and disease outcomes. To gain a better understanding of the role that mutations in ARX play in ID and epilepsy, we investigate ARX patient mutations modelled in mice. Over half of all ARX mutations result from expansions of the first two polyalanine (PA1 and PA2 respectively) tracts. However, phenotypic data for the mouse modelling the more frequent ARX PA2 dup24 mutation in patients has not been reported and constitutes a barrier to understanding the molecular mechanisms involved. Here we report the first comprehensive analysis of postnatal outcomes for mice modelling disease-causing expansions to both PA1 and PA2 tracts. Both strains were found to have impaired learning and memory, reduced activity, increased anxiety and reduced sociability; with PA1 mice generally displaying greater behavioural deficits in keeping with the more severe phenotype reported in patients. In agreement with previous reports, 70% of PA1 males exhibit myoclonic seizures by two months of age, with the first observed at P18. In this report, we show 80% of PA2 males also display myoclonic seizures, with the first observed at P19. Consistent with patient phenotypes, we observe large variations in seizure progression and severity for both PA1 and PA2 individual mice. The generation of this comprehensive baseline data is a necessary step on the path to the development of therapies to improve patient outcomes.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Peptídeos/genética , Fatores de Transcrição/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Lateralidade Funcional , Genótipo , Proteínas de Homeodomínio/genética , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Comportamento Social , Estatísticas não Paramétricas , Fatores de Transcrição/genética , Gravação em Vídeo
12.
Hum Mol Genet ; 24(18): 5250-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123493

RESUMO

Protocadherin 19 (PCDH19) female limited epilepsy (PCDH19-FE; also known as epilepsy and mental retardation limited to females, EFMR; MIM300088) is an infantile onset epilepsy syndrome with or without intellectual disability (ID) and autism. We investigated transcriptomes of PCDH19-FE female and control primary skin fibroblasts, which are endowed to metabolize neurosteroid hormones. We identified a set of 94 significantly dysregulated genes in PCDH19-FE females. Intriguingly, 43 of the 94 genes (45.7%) showed gender-biased expression; enrichment of such genes was highly significant (P = 2.51E-47, two-tailed Fisher exact test). We further investigated the AKR1C1-3 genes, which encode crucial steroid hormone-metabolizing enzymes whose key products include allopregnanolone and estradiol. Both mRNA and protein levels of AKR1C3 were significantly decreased in PCDH19-FE patients. In agreement with this, the blood levels of allopregnanolone were also (P < 0.01) reduced. In conclusion, we show that the deficiency of neurosteroid allopregnanolone, one of the most potent GABA receptor modulators, may contribute to PCDH19-FE. Overall our findings provide evidence for a role of neurosteroids in epilepsy, ID and autism and create realistic opportunities for targeted therapeutic interventions.


Assuntos
Caderinas/genética , Epilepsia/sangue , Epilepsia/genética , Mutação , Pregnanolona/deficiência , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Adolescente , Adulto , Idade de Início , Membro C3 da Família 1 de alfa-Ceto Redutase , Criança , Pré-Escolar , Análise por Conglomerados , Epilepsia/diagnóstico , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Pessoa de Meia-Idade , Fenótipo , Pregnanolona/sangue , Protocaderinas , Reprodutibilidade dos Testes , Transdução de Sinais , Adulto Jovem
13.
Hum Mol Genet ; 23(4): 1084-94, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24122442

RESUMO

Intellectual disability (ID) is a highly prevalent disorder that affects 1-3% of the population. The Aristaless-related homeobox gene (ARX) is a frequently mutated X-linked ID gene and encodes a transcription factor indispensable for proper forebrain, testis and pancreas development. Polyalanine expansions account for over half of all mutations in ARX and clinically give rise to a spectrum of ID and seizures. To understand how the polyalanine expansions cause the clinical phenotype, we studied mouse models of the two most frequent polyalanine expansion mutations (Arx((GCG)7) and Arx(432-455dup24)). Neither model showed evidence of protein aggregates; however, a marked reduction of Arx protein abundance within the developing forebrain was striking. Examining the expression of known Arx target genes, we found a more prominent loss of Lmo1 repression in Arx((GCG7)/Y) compared with Arx(432-455dup24/Y) mice at 12.5 and 14.5 dpc, stages of peak neural proliferation and neurogenesis, respectively. Once neurogenesis concludes both mutant mouse models showed similar loss of Lmo1 repression. We propose that this temporal difference in the loss of Lmo1 repression may be one of the causes accounting for the phenotypic differences identified between the Arx((GCG)7)and Arx(432-455dup24) mouse models. It is yet to be determined what effect these mutations have on ARX protein in affected males in the human setting.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas com Domínio LIM/genética , Proteínas Nucleares/genética , Telencéfalo/metabolismo , Fatores de Transcrição/genética , Animais , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurogênese , Proteínas Nucleares/metabolismo , Peptídeos/genética , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Telencéfalo/embriologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Am J Hum Genet ; 92(1): 114-25, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246292

RESUMO

Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.


Assuntos
Epilepsia/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Oxirredutases N-Desmetilantes/genética , Fatores de Transcrição/genética , Animais , Criança , Expansão das Repetições de DNA , Histona Desmetilases , Humanos , Camundongos , Camundongos Knockout , Peptídeos/genética
15.
Epilepsia ; 57(11): 1858-1869, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665735

RESUMO

OBJECTIVE: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants. METHODS: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search. Two patients were recruited from our early onset epileptic encephalopathy cohort and one patient from personal communication. The 18 patients who have epilepsy in addition to ID are the subject of this study. Information regarding the 18 patients was ascertained by questionnaire provided to the treating clinicians. RESULTS: Six affected individuals had an inherited IQSEC2 variant and 12 had a de novo one (male-to-female ratio, 12:6). The pathogenic variant types were as follows: missense (8), nonsense (5), frameshift (1), intragenic duplications (2), translocation (1), and insertion (1). An epileptic encephalopathy was diagnosed in 9 (50%) of 18 patients. Seizure onset ranged from 8 months to 4 years; seizure types included spasms, atonic, myoclonic, tonic, absence, focal seizures, and generalized tonic-clonic (GTC) seizures. The electroclinical syndromes could be defined in five patients: late-onset epileptic spasms (three) and Lennox-Gastaut or Lennox-Gastaut-like syndrome (two). Seizures were pharmacoresistant in all affected individuals with epileptic encephalopathy. The epilepsy in the other nine patients had a variable age at onset from infancy to 18 years; seizure types included GTC and absence seizures in the hereditary cases and GTC and focal seizures in de novo cases. Seizures were responsive to medical treatment in most cases. All 18 patients had moderate to profound intellectual disability. Developmental regression, autistic features, hypotonia, strabismus, and white matter changes on brain magnetic resonance imaging (MRI) were prominent features. SIGNIFICANCE: The phenotypic spectrum of IQSEC2 disorders includes epilepsy and epileptic encephalopathy. Epileptic encephalopathy is a main clinical feature in sporadic cases. IQSEC2 should be evaluated in both male and female patients with an epileptic encephalopathy.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Adulto Jovem
16.
Nat Genet ; 39(9): 1127-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704778

RESUMO

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Linhagem Celular Transformada , Códon sem Sentido , Análise Mutacional de DNA , Saúde da Família , Feminino , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Síndrome
17.
Hum Genet ; 134(11-12): 1163-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26337422

RESUMO

Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.


Assuntos
Variações do Número de Cópias de DNA , Duplicação Gênica , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adulto , Animais , Animais Geneticamente Modificados , Encéfalo/embriologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Embrião não Mamífero , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Fatores de Transcrição/metabolismo , Peixe-Zebra
18.
Am J Hum Genet ; 91(4): 694-702, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23000143

RESUMO

The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.


Assuntos
Fator C1 de Célula Hospedeira/genética , Deficiência Intelectual/genética , Mutação , RNA não Traduzido/genética , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Sítios de Ligação , Cromatina/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/genética , Cromossomo X/genética , Fator de Transcrição YY1/genética
19.
Hum Mol Genet ; 21(7): 1639-47, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22194193

RESUMO

Mutations in the Aristaless-related homeobox (ARX) gene are one of the most frequent causes of X-linked intellectual disability (ID). Several missense mutations, clustered in the paired-type homeodomain of ARX, have been identified. These mutations lead to a range of phenotypes from X-linked lissencephaly with abnormal genitalia to seizure disorders without brain malformations including X-linked infantile spasms with ID (ISSX-ID) and X-linked myoclonic epilepsy with spasticity and ID (XMESID). The effect of these mutations on the DNA-binding and transcriptional activity has been evaluated. Luciferase reporter assays showed altered repression activity of ARX by all mutations, causing brain malformations and ISSX-ID phenotypes, but not by the P353L mutation implicated in a milder phenotype of XMESID. Similarly, transient overexpression of wild-type ARX repressed endogenous expression of known ARX targets, LMO1 and SHOX2, when measured by real-time quantitative polymerase chain reaction. Overall, the molecular consequence of missense mutations correlated well with the severity of the clinical phenotype. In all mutations tested, except P353L, the DNA binding was abolished. Electrophoretic mobility shift assay results were validated using chromatin immunoprecipitation following overexpression of normal and selected missense mutations. Unlike wild-type ARX and clinically less severe mutations, the mutations leading to severe clinical phenotypes were not able to specifically bind to DNA upstream of known, endogenous ARX-regulated genes, LMO1 and SHOX2. In conclusion, the missense mutations in the ARX homeodomain represent loss-of-function mutations, which lead to a reduced or complete loss of DNA binding and as a consequence, a loss of transcriptional repression.


Assuntos
Proteínas de Homeodomínio/genética , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Estrutura Terciária de Proteína/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
20.
Trends Genet ; 25(7): 308-16, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19556021

RESUMO

X-linked mental retardation (XLMR) or intellectual disability (ID) is a common, clinically complex and genetically heterogeneous disease arising from many mutations along the X chromosome. It affects between 1/600-1/1000 males and a substantial number of females. Research during the past decade has identified >90 different XLMR genes, affecting a wide range of cellular processes. Many more genes remain uncharacterized, especially for the non-syndromic XLMR forms. Currently, approximately 11% of X-chromosome genes are implicated in XLMR; however, apart from a few notable exceptions, most contribute individually to <0.1% of the total landscape, which arguably remains only about half complete. There remain many hills to climb and valleys to cross before the ID landscape is fully triangulated.


Assuntos
Cromossomos Humanos X/genética , Variação Genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa